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Abstract 
 
A combination of uptake field studies on natural phytoplankton assemblages and 
laboratory proteomic and physiological experiments on cyanobacterial isolates were 
conducted investigating the interactions of cadmium (Cd), zinc (Zn), and phosphorus (P) 
in marine Synechococcus.  Enriched stable isotope field uptake studies of 110Cd in the 
Costa Rica Upwelling dome, a Synechococcus feature, showed that uptake of Cd occurs 
in waters shallower than 40 m, correlates positively with chlorophyll a concentrations 
and is roughly equivalent to the calculated upwelling flux of cadmium inside the dome.  
In laboratory experiments, Synechococcus WH5701 cells exposed to low picomolar 
quantities of free Cd under Zn deficiency show similar growth rates to no added Cd 
treatments during exponential growth phase, but show differences in relative abundances 
of many proteins involved in carbon and sulfur metabolism suggesting a great metabolic 
impact.  During stationary phase, chronic Cd exposure in this coastal isolate causes an 
increase in relative chlorophyll a fluorescence and faster mortality rates.  The interactions 
of acute Cd exposure at low picomolar levels with Zn and phosphate (PO4

3-) were 
investigated in Synechococcus WH8102, an open ocean isolate.  The presence of Zn 
appears vital to the response of the organism to different PO4

3- concentrations.  
Comparisons with literature transcriptome analyses of PO4

3- stress show similar increases 
in relative abundance of PO4

3- stress response proteins including a PO4
3- binding protein 

and a Zn-requiring alkaline phosphatase.  A bacterial metallothionein, a Zn-associated 
protein, appears to be correlated with proteins present under low PO4

3- conditions.  
Together, these experiments suggest that the interactions of Cd and Zn can affect 
Synechococcus and play a role in the acquisition of PO4

3-. 
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Chapter 1: Introduction 
 Consider the earth, an approximately 4.5 billion year old differentiated planet 

with a radius of roughly 6,400 kilometers.  The crustal thickness of earth is close to 40 

kilometers and oceans cover around 70% of the earth’s surface.  Much of life on earth is 

driven by energy from the sun in the form of primary production as the base of the food 

chain.  Primary productivity occurs on both land and the ocean.  Marine primary 

productivity is thought to account for about 45% of total primary productivity 

(Falkowski, 1994; Field et al., 1998; Morel et al., 2003).  Under the umbrella of marine 

primary productivity are dinoflagellates, diatoms, algae and cyanobacteria.  

Cyanobacteria are evolutionarily ancient and have persisted through many changes in 

ocean chemistry, including changing metal conditions.  Marine Synechococcus have 

developed many adaptations to horizontal gradients in nutrients and light (Scanlan, 

2003).  This thesis explores the response of modern Synechococcus to changes in 

cadmium (Cd) and zinc (Zn) exposure with a focus on the interactions between these two 

elements and the effects of each on phosphorus (P) metabolism.  Field experiments 

conducted in the Costa Rica Upwelling Dome, a Synechococcus feature, are presented in 

Chapter 2 and laboratory manipulations with axenic strains of Synechococcus are 

presented in Chapters 3 and 4. 

Cyanobacteria 

 Cyanobacteria, especially marine cyanobacteria, are an integral part of the 

earth/life system as agents of carbon fixation and oxygen production.  The marine 

cyanobacteria Synechococcus and Prochlorococcus contribute between 32 and 80% of 

the total primary productivity in oligotropic oceans (Rocap et al., 2002) and contribute 

about 50% of fixed carbon in some oceanic regions (Zwirglmaier et al., 2007). 

Synechococcus species alone are considered to be important contributors to global 

primary productivity and are thought to dominate phytoplankton populations throughout 

much of the world’s oceans (Scanlan, 2003).  In addition to their modern contribution to 

primary productivity, cyanobacteria are suspected to be responsible for the first biological 

oxygen generation starting around three billion years ago (Williams and Frausto da Silva, 
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2006) resulting in the oxygenation of the atmosphere 2.2-2.4 billion years ago (Catling et 

al., 2001; Catling and Claire, 2005) and thus have played a vital role in the chemistry and 

evolution of life on this planet. 

 Cyanobacteria are ubiquitous, versatile and have been found in diverse 

environments ranging from desert crusts, to freshwater and hot spring environments.  

Cyanobacteria are unique in that their cell walls have features of both gram negative and 

gram positive bacteria (Hoiczyk and Hansel, 2000).  Cyanobacteria also contain 

phycobiliproteins, which enable them to adapt to their surrounding light environment, 

and among the cyanobacteria a great range of spectral variation in their antenna pigments 

can be found (Glazer, 1989).  These phycobiliproteins have been used as fluorescence 

tags for cell surface markers (Kresage et al., 2009).  Researchers have noted the aesthetic 

and chemical significance of the phycobiliproteins of cyanobacteria for over 130 years: “ 

It would be difficult to find another series of colouring matters of greater beauty or with 

such remarkable and instructive chemical and physical peculiarities” (Sorby, 1877). 

Evolution and zinc 

The evolution of cyanobacteria is closely linked to the oxygenation status of the 

ocean, which directly affects the speciation of Zn and Cd.  Zn is the cofactor for many 

proteases and vital in many enzymes.  Zn was not as abundant during early evolution due 

to the formation of insoluble sulfide complexes (Canfield, 1998; Anbar and Knoll, 2002; 

Saito et al., 2003).  Bacteria may have grown, operated and evolved with limited amounts 

of Zn.  As the oceans changed, Zn became more bioavailable (Saito et al., 2003). The Zn 

requirements of many cyanobacteria are very low, which is consistent with the idea that 

cyanobacteria may have evolved in a sulfidic ancient ocean (Saito et al., 2003).  Oxygen 

was toxic to many microorganisms early in their evolutionary history, which suggests the 

onset of higher levels of Zn may have been toxic prior to adaptation as well (former idea 

- Williams and Frausto da Silva, 2006).  There was an explosion in the diversity of Zn-

binding protein structures in eukaryotic organisms suggesting that the ocean was not 

anoxic or euxinic for this to occur (Dupont et al., 2006b).  Because of 

compartmentalization, however, bacteria are able to cope with changing environmental 
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chemistry.  Compartmentalization is thought to be important to the evolution of 

environmental chemistry and life (Williams and Frausto da Silva, 2006) and the study of 

metal ions in compartments can provide understanding of cell and environmental 

evolution that the organic chemistry of cells alone cannot provide (Williams, 2007).  In 

the modern ocean, Zn availability may influence phytoplankton diversity in the Ross Sea 

(Saito et al., 2010).  There are almost no studies of Zn handling mechanisms in marine 

cyanobacteria (Blindauer, 2008a).  This thesis explores how the addition of Zn can 

decrease the toxicity of Cd in Chapter 3 and the interactions of Zn with Cd and P in 

Chapter 4.  

Cadmium and zinc as trace metals 

 Cd and Zn are both group 12 elements in the periodic table, implying a certain 

degree of chemical similarity.  In magmatic rocks, the ratio of Cd to Zn is about 1:500 

(Goldschmidt, 1954).  It has been known for over half a century that the concentration of 

Cd in seawater was less than 0.005 ppm (1 nM) (Noddack and Noddack, 1939), and 

geochemists noticed the accumulation of Cd in rocks of marine origin (Goldschmidt, 

1954).  Only in the 1970’s were accurate measurements of Cd and Zn able to be made at 

the pM to nM levels found in surface seawater.  Cd and Zn have nutrient-like profiles, 

meaning they are depleted in surface waters and increase with depth (Boyle, 1976; 

Bruland, 1980) (Figure 1.1).  Cd correlates closely with dissolved phosphate, and Zn 

correlates with dissolved silicate concentrations throughout the oceans.  This implies that 

like the major nutrients, Cd and Zn are taken up by microorganisms in the surface (as 

discussed in Chapter 2) and resolubilized at depth.  These metals may have different roles 

in different environments.  Zn is considered a micronutrient in the open ocean.  Toxicity 

of Cd to a coastal cyanobacterium is presented in Chapter 3.   

 Like many other bioactive trace metals in surface waters, dissolved Cd and Zn in 

the ocean are complexed by strong organic ligands (Bruland, 1980; Bruland, 1992; 

Ellwood and van den Berg, 2000; Ellwood, 2004, and Morel et al., 2003).  Whether or 

not Cd functions as a nutrient or toxin is likely to be controlled by its bioavailability.  The 

bioavailability, in turn, is controlled by the speciation of trace metals (Hunter et al., 1997) 
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(Figure 1.2).  In many studies, toxicity has been proportional to the summation of 

inorganic metal species added to the media (Sunda, 1988), although for copper and iron, 

organic ligands have been shown to be bioavailable (Hutchins et al., 1999; Maldonado et 

al., 1999; Quigg et al., 2006 and Semeniuk et al., 2009).  Despite the fact that the 

speciation of bioactive trace metals directly influences bioavailability and bioavailability 

likely controls the status of a trace metal as a nutrient or a toxin, only a limited number of 

speciation measurements have been made in the ocean for Zn and Cd (Bruland, 1980; 

Bruland, 1992; Ellwood and van den Berg, 2000; Ellwood, 2004). 

 
Figure 1.1: General Cd profile in the open ocean.  Dissolved total Cd has a nutrient-like profile, 
closely correlated with phosphate, and reaches 0.8-1 nM concentrations at depth.  Surface waters 
generally have low picomolar to undetectable dissolved total Cd.  With the exception of iron, 
which has high particulate concentrations, particulate concentrations are usually an order of 
magnitude lower than dissolved concentrations and there are only a few high-quality data sets that 
exist (Sherrell and Boyle, 1992; Cullen et al., 2001).  Dissolved total Cd numbers are from the 
central North Pacific (Bruland, 1992).  Particulate Cd numbers are from the North Atlantic near 
Bermuda, 50 m and 1450 m (Sherrell and Boyle, 1992). 
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Figure 1.2: Cd2+ in the dissolved phase in seawater. a) Cd2+ as a free ion. b) Cd2+ complexed with 
Cl- to form CdCl+ (and other chlorocomplexes) c) Cd2+ bound to organic ligands of uncertain 
structure and origin.  Inorganic Cd2+ is mostly present as CdCl+ in seawater, although Cd2+ has 
been found to be 70% bound to organic ligands in some surface waters.  Cd2+ and CdCl+ are 
considered to be labile and bioavailable.  Cd bound to organic ligands is not thought to be 
bioavailable.  
 

There are only a few datasets which consider bioactive trace metals in the 

particulate fraction (Sherrell and Boyle, 1992; Cullen and Sherrell, 1999; Cullen et al., 

2001).  With the exception of iron, particulate concentrations tend to be an order of 

magnitude lower than dissolved concentrations (Cullen et al., 2001 and references 

therein).  One can envision several mechanisms for the partitioning of metal ions within 

the particulate fraction.  Metal ions can be taken up into microorganisms, adsorbed to the 

surface of microorganisms, adsorbed to particulate organic matter (POM), and adsorbed 

to mineral surfaces (Figure 1.3).  Measuring the precise mechanism of partitioning within 

the particulate fraction is difficult.  Uptake of Cd by microorganisms may be responsible 

for concentration of Cd in the particulate phase.  Adsorption onto the cell surface is 

possible but not highly probable.  Researchers have experimented with extracellular 

washes with varying degrees of success and found adsorption of Cd to be minor in low 

metal environments (Hudson and Morel, 1989; Tovar-Sanchez et al., 2003, 2004; Tang 

and Morel, 2006).  The role of adsorption to inorganic mineral phases in the presence of 

particulate organic matter has not been determined.  Cd uptake experiments conducted in 

the field are presented in Chapter 2. 
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Figure 1.3: Cd2+ in the particulate phase of seawater.  a) Uptake of Cd into microorganisms. b) 
Adsorption of Cd onto the surface of microorganisms. c) Adsorption of Cd2+ onto particulate 
organic matter (POM). d) Adsorption of Cd onto mineral surfaces. Intracellular cadmium (a) 
probably represents the largest fraction of Cd in the particulate phase.  Adsorption onto the cell 
surface (b) is likely a small fraction.  Adsorption to inorganic mineral phases (c) may play a 
minor role in particulate cadmium fractionation. 
 
The interaction of cadmium and zinc and cellular uptake 

Little is known about the intracellular partitioning of Cd and Zn following uptake 

in surface waters (Figure 1.3a).  The question remains as to what the organisms are doing 

with Cd and Zn once inside the cell.  This question was actively pursued in cyanobacteria 

using physiological and proteomic studies in Chapters 3 and 4.  Zinc is vital to many 

enzymes.  Of all enzymes with known structures, Zn is utilized in 9% of them (Waldron 

et al., 2009).  This is second only to magnesium (16%) (Waldron et al., 2009).  Cd, on the 

other hand, is only known in the structure of a single carbonic anhydrase (Xu et al., 

2008).  Some other possibilities for intracellular Cd include incorporation into calcium 

carbonate tests of foraminifera, binding by metallothionein, binding by low molecular 

weight thiols, sequestration in polyphosphates and possible use in other enzymes (Figure 

1.4).  Boyle 1976 posed the question to what part of the cell the Cd goes, either the soft 

part or the hard parts.  The soft part is thought to dominate because the ratio of Cd:C in 

organic matter is 3.3 x10-6 and Cd:C in carbonate minerals is less than 0.2 x10-6 (Boyle, 

1988).  The carbonate phase, including foraminifera, is responsible for only 2% of 
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vertical cadmium transport (Boyle, 1988).  This is important for the use of Cd:Ca as a 

paleoproxy for phosphate concentrations in foraminiferal calcite, through incorporation 

of Cd into foraminiferal tests (Boyle, 1988; Elderfield and Rickaby, 2000).  Ho et al., 

2003 did a study on the metal composition of fifteen marine eukaryotic plankton species.  

Their results corroborate that significant Cd may not be present in the hard parts.  

Cyanobacteria do not have hard parts, so Cd must be interacting with the cell, probably in 

the form of proteins or metabolites. 

 
Figure 1.4: Cd inside a cell. The distribution of cadmium within the cell is unknown.  Cd has 
been shown to replace Zn in the active site of carbonic anhydrase in the diatom, T. weissflogii.  
Incorporation into foraminiferal tests has been observed.  Cd could possibly be used in other 
cellular enzymes.   
 
 The concept of Cd as a nutrient or a toxin has been investigated in cultures of 

cyanobacteria in Chapters 3 and 4.  Cd has been shown to have toxic effects to eukaryotic 

organisms in culture (Lee and Morel, 1995), but in some instances of Zn limitation in the 

marine diatom Thalassiosira weissflogii and other species the addition of low levels of 

Cd restored the growth rate (Price and Morel, 1990; Lee and Morel, 1995; Sunda and 

Huntsman, 2000).  It follows that Cd at low concentrations (pM) may act as a nutrient by 
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replacing Zn (Lee and Morel, 1995), with Cd replacing Zn in the active site of carbonic 

anhydrase (Morel et al., 1994; Lee et al., 1995; Lane and Morel, 2000 and Lane et al., 

2005).  Early work on this concept showed that in certain fungi Cd cannot 

physiologically replace Zn (Goldschmidt, 1954).  However, Synechococcus species have 

been shown to have lower toxicity thresholds relative to eukaryotic organisms by 

approximately two orders of magnitude (Brand et al., 1986; Payne and Price, 1999; Saito 

et al., 2003).  Carbonic anhydrase may not be the major sink for cellular Cd, given that 

the only known biological use of Cd is as a substitute for Zn in a Cd carbonic anhydrase 

(CdCA), and the gene for CdCA is not found in cyanobacterial genomes.  A calculation 

and/or study demonstrating the fraction of cellular Cd in carbonic anhydrase has not been 

performed, although cadmium-containing carbonic anhydrases are a topic of active 

research (Lane et al., 2005; Park et al., 2007; Xu et al., 2008).  The question of 

intracellular Cd partitioning is difficult to answer partially because the carbonic 

anhydrase content and subsequent Cd uptake of some cells has been suggested to change 

with pCO2 (Cullen et al., 1999) and it is difficult to measure.  The presence of Zn has 

been previously noted to have an effect on Cd toxicity (Saito et al., 2003) and Chapters 3 

and 4 address this issue. 

There is another possibility for the localization of intracellular Cd.  

Metallothionein, by binding metals, can act as an intracellular buffer (Figure 1.5).  If the 

cell is not actively utilizing Cd, then perhaps it is being stored somewhere where it cannot 

affect the overall functionality of the cell.  Metallothioneins have been observed to form 

clusters in cells with bound metals in mammalian systems.  Synthesis of metallothioneins 

has been shown to be induced by increased metal and oxidative stress (Palmiter, 1998 

and references therein).  
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Figure 1.5:  Metallothionein (MT) a) Metallothionein from the cyanobacterium, Synechococcus 
WH8102, 56 amino acid protein. b) MT-II from rabbit liver, 61 amino acid protein.  MT-II binds 
seven Cd ions in two clusters.  The number of metal ions bound and structure of metallothionein 
from WH8102 is unknown. Black depicts cysteine residues. Met = methionine, Ser = serine, Thr 
= threonine, Ala = alanine, Ile = isoleucine, Lys = lysine, Pro = proline, Val = valine, Glu = 
glutamic acid, Gly = glycine, Gln = glutamine, Phe = phenylalanine, His = histidine, Asn = 
asparagine, Asp = aspartic acid. Green spheres represent Cd2+ ions.  Black and grey lines 
represent bonds from Cd2+ ions to cysteine residues. 
 

Metallothioneins are found in organisms ranging from multicellular eukaryotes to 

bacteria and have been typically associated with the metals, zinc, copper, and cadmium, 

although they have also been observed to bind silver, mercury, and arsenic as well 

(Duncan et al., 2006).  They belong to a super-family of intracellular metal-binding 

proteins (Coyle, 2002), although they have been reported extracellularly in eukaryotic 

organisms (Lynes, 2006).  Metallothioneins are polypeptides that, based on equine renal 

metallothionein, have several of the following six features: 1) low molecular weight, 

approximately 56 amino acid residues, 2) high metal content, 3) a characteristic amino 

acid composition consisting of high cysteine content, and no aromatic amino acids 

(phenylalanine, tryptophan, and tyrosine) nor histidine, 4) unique amino acid sequence 

with a characteristic distribution of cysteine (cys) residues such as cys-X-cys, 5) 

spectroscopic features characteristic of metal thiolates (mercaptides), and 6) metal 

thiolate cluster (Kojima et al., 1999).  Note that histidine has subsequently been found in 
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bacterial metallothioneins and can enhance the relative affinity for Zn in comparison to 

Cd (Blindauer, 2008b). 

The precise function of eukaryotic metallothionein has eluded researchers ever 

since it was first isolated and identified in 1957 from horse kidney (Margoshes and 

Vallee, 1957).  Metallothioneins may function as 1) metal resistance proteins for 

detoxifying zinc, cadmium, and copper; 2) reservoirs for the storage of excess Zn and/or 

copper that can be mobilized under metal limiting conditions; 3) metal chaperones that 

deliver Zn to Zn-dependent proteins; and 4) antioxidants that scavenge oxygen radicals 

(Palmiter, 1998).  Bacterial metallothioneins have thus far been implicated in the cellular 

homeostasis of Zn through the binding, sequestering, and buffering of intracellular Zn 

(Robinson et al., 2001).  In mammals, metallothioneins are thought to protect cells from 

oxidative damage (Cai and Cherian, 2003).  Kang (2006) maintains that the redox cycle 

of metallothionein supports the use of metallothioneins in cell homeostasis, protection 

from oxidative stress, and metal detoxification.  The role of metal detoxification has the 

most supporting evidence, although there also has been increasing evidence for the 

paramountcy of metallothionein to maintaining intracellular homeostasis of Zn and Cu, 

particularly the metal storage and chaperone roles of metallothionein (Suhy et al., 1999; 

Rae et al., 1999; O’Halloran and Culotta, 2000; and Outten and O’Halloran, 2001). 

Turning to organisms relevant to the ocean and integral to global carbon cycling, 

metallothioneins have been found in the genomes of numerous Synechococcus strains, 

such as WH8102 (1), WH7803 (1), WH5701 (2), CC9311 (4) and CC9605 (3) (Palenik et 

al., 2003; Palenik et al., 2006).  Protein database searches yield metallothionein proteins 

in eight Synechococcus species, three of them marine, two of them thermophiles, and 

none in Prochlorococcus species (twelve genomes searched).  Amino acid alignments 

reveal on average 36% identity among these cyanobacterial metallothioneins.  Palenik et 

al., 2003 suggest that Synechococcus seems to be more resistant to copper compared to 

Prochlorococcus and that the difference may be due to efflux pumps for metals present in 

Synechococcus that are not present in Prochlorococcus.  Metallothionein may contribute 

to this difference.  The role of metallothioneins and their relationship to metal 
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concentrations in the environment has been largely unexplored.  The work involved in 

this thesis explored the possibility of metallothioneins being important for Zn 

homeostasis and the prevention of Cd toxicity and some data are shown in Chapter 4. 

Metallothioneins are not the only compounds known to bind metals in cells 

(Figure 1.6).  Other known metal binding ligands include phytochelatins, which were first 

isolated from plants and later observed to occur in ocean waters (Ahner et al., 1994, 

1997).  Phytochelatins were classified as a MT-III (Shaw et al., 1992).  For 

phytochelatins to maintain a concentration of 20 pM in the water column they would 

need an extracellular turnover time of 100 days assuming an open ocean chlorophyll a 

concentration of 0.1 µg L-1, a phytochelatin concentration of 2 µg per g chl a, and a 

phytoplankton turnover of 1 day (Ahner et al., 1994).  The authors concluded that 

phytochelatins do not constitute a major fraction of the elusive metal ligands dissolved in 

seawater measured by electrochemists, because the thiols are subject to oxidation and the 

overall molecule subject to proteases.  Protein database searches yield a putative 

phytochelatin synthase in Prochlorococcus and a phytochelatin synthase-like protein in 

Synechococcus, although it is said that phytochelatins have been extensively searched for 

and not found in many species of cyanobacteria (James Moffett, personal 

communication, 2007).  Phytochelatins are comprised of a repeating peptide sequence of 

(γ-Glu-Cys)n-Gly, where n = 2-11 (Figure 1.6c). 

Glutathione is a tripeptide of Glu-Cys-Gly, and a possible metal binding agent 

(Figure 1.6b).  Low molecular weight thiols such as glutathione have been studied in 

marine phytoplankton and in the ocean (Tang et al., 2000; Dupont and Ahner, 2005; 

Dupont et al., 2006a). They are thought to be important to metal speciation (Dupont and 

Moffett et al., 2006).  The vital amino acid for metal affinity in all of these compounds is 

cysteine (Figure 1.6a).  Particulate and dissolved total and reduced thiols were made in 

collaboration with Tristan Kading in a repeat experiment of the Zn-deprived chronic Cd 

experiment discussed in Chapter 3, and the preliminary results show that these 

metabolites are an important response to Cd exposure in Synechococcus WH5701.  
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Metallothionein is just one of several possible biomolecules to be involved in metal 

homeostasis, and the least studied in marine environments.  

 
Figure 1.6: Possible metal binding moieties in cells. a) the amino acid cysteine. b) glutathione. c) 
phytochelatin, classified as a MT-III.  
 
 In a recent EXAFS study of Cd binding to the surfaces of Bacillus subtilis and 

Shewanella oneidensis, sulfhydryl sites on the surface of cells may be important for 

environmental metal binding (Mishra et al., 2010).  Loadings varied from 1-200 ppm and 

phosphoryl sites were more important than carboxyl ligands for Cd binding at high Cd 

loadings, carboxyl sites were important at intermediate Cd loadings and sulfhydryl sites 

were dominant at low Cd loadings (Mishra et al., 2010).  These loadings are many orders 

of magnitude greater than any loadings one might expect in the marine environment, 

nevertheless, this is related evidence for the importance of sulfhydryl-metal binding. 

Interaction of zinc and phosphorus 

 As Zn and Cd are known to interact, and Cd and phosphate are observed to be 

correlated in the ocean, so do Zn and P have an observed relationship.  Zn and P are 

thought to be an example of Type III biochemically dependent colimitation, where the 

uptake of one nutrient, P, is dependent upon adequate nutrition with regard to the other, 

Zn (Saito et al, 2008).  Alkaline phosphatase may be at the root of this; it is in many cases 

a Zn-requiring enzyme (Morel et al., 2003) and is used to access organic phosphonates, 
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often during times of low phosphate availability.  Based on extrapolation of 

experimentation with the coccolithophore Emiliania huxleyi, Zn and P colimitation could 

occur in highly oligotrophic regions such as the Sargasso Sea (Shaked et al., 2006).  The 

interactions of Zn and P are addressed in Chapter 4. 

Environmental Gradient Culture Studies 

 During the course of this thesis work, five strains of marine Synechococcus 

WH5701, WH8109, WH7803, WH7805 and WH8102 with sequenced genomes (or 

sequencing in progress as in the case of WH8109) were used as representatives of 

organisms adapted to a varying natural oceanic chemical gradient due to their original 

isolation location from Long Island Sound (WH5701) out to the Sargasso Sea (WH8102) 

(Figure 1.7).   The coastal side of the environmental gradient is expected to have higher 

trace metal availability and experience increased variability in irradiance due to mixing 

relative to the open ocean.  Researchers have long been interested in the interaction and 

interdependence between microorganisms and their environmental milleux.  Strains with 

genomic information were chosen so that proteomic analyses could be performed.  All 

strains were maintained over the course of two-plus years in a modified EDTA-buffered 

PRO-TM media both with and without the addition of Zn.  Most of my experiments were 

done with the cultures maintained without Zn in the media.  The physiological (in all 

cases) and proteomic responses (in some cases) to varying metal manipulations of 

cadmium, zinc, copper and iron as well as macronutrient manipulations with phosphate 

and nitrate were investigated in order to elucidate the interactions of these metals with 

each other and the respective strains of cyanobacteria.  Two of these experiments are 

presented in Chapters 3 and 4.   



  
 26 
 
 
 

 
 At the beginning of the culture experimentation during this thesis work, the 

hypothesis was that the more coastally proximal strains would be better able to deal with 

Cd and Zn stress because of their origin, thus inheriting a greater genetic capability to 

deal with environmental stressors.  The role of Cd as nutrient or toxin was queried under 

this hypothesis because of the fine line between toxin and nutrient that has been noted in 

the literature for this element, the oceanographic relationship observed between cadmium 

and phosphate, and the uptake of Cd observed in the field described in Chapter 2.  Strains 

were deprived of Zn in order to find the limits of Cd toxicity, it was noted in earlier 

studies that the presence of Zn decreased the toxicity of Cd (Saito et al., 2003).  

Preliminary studies (data not shown) led to the studies that are presented here in Chapters 

3 and 4.  

 Metals and proteins in cells interact in many ways.  Many proteins directly require 

metals as cofactors in order to properly function.  In this thesis, the different exposures of 

cyanobacterial cells to Cd and Zn were shown to affect relative protein abundances and 

by inference the overall functionality of a cell.  This global proteomics approach provides 

a relative quantification of changes in protein abundance between samples in a given 

experiment and may be considered systems biology.  Examining these data may indicate 

potential mechanisms of action with regard to the effects of metals and macronutrients 
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inside a cell and is the first level of investigation.  The data sets produced in Chapters 3 

and 4 provide some insights to potential mechanisms of metal homeostasis and toxicity in 

cyanobacterial cells, but inevitably provoke more questions providing an excellent base 

from which to launch future research, be it absolute quantification of proteins using the 

same samples using triple quadrupole mass spectrometry, detailed biochemical 

investigations, more culture studies, or interactions in the environment.  In the future, as 

proteomic methods are applied to environmental samples and combined with particulate 

and dissolved metal and metabolite measurements as well as parallel laboratory 

investigations into mechanisms, perhaps the interactions of Cd, Zn and P in the ocean 

will become clear.  As for this thesis, it represents a first step into understanding Cd 

uptake in the ocean and the interactions of Cd, Zn, and P in marine cyanobacteria.    
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Chapter 2 
 

Enriched Stable Isotope Uptake and Cadmium Addition Experiments with Natural 
Picophytoplankton Assemblages in the Costa Rica Upwelling Dome 

 
Abstract 
 Cadmium (Cd) can function as either a nutrient or toxin in the marine 
environment.  This duality has been demonstrated in phytoplankton cultures where Cd 
has been shown to have toxic effects to cyanobacteria, but acts as a nutrient in the marine 
diatom Thalassiosira weissflogii by biochemically replacing zinc (Zn).  Whether or not 
Cd functions as a nutrient or toxin is likely to be controlled by its bioavailability to 
organisms, detoxification mechanisms the organisms may possess that give a toxicity 
threshold or sensitivity, and exposure or dosage.  Like many other trace metals in surface 
waters, Cd is complexed by strong organic ligands, which are thought to be produced by 
marine phytoplankton, particularly the cyanobacteria, Synechococcus.   

In the summer of 2005, the bioavailability and uptake of Cd in the Costa Rica 
Upwelling Dome was examined using Cd addition and enriched stable isotope uptake 
experiments.  The Costa Rica Dome is a tropical thermocline dome in the Eastern Pacific 
fed uniquely by a coastal wind jet that produces a habitat with high phytoplankton 
biomass relative to surrounding waters.  This dome supports some of the highest cell 
densities of the cyanobacterium, Synechococcus, reported in nature, making it an ideal 
place to observe microbial processes that may be affected by the higher abundance of 
Synechococcus.  The greater hypothesis was that greater ligand production inside the 
dome might prevent Cd toxicity, but as a first step in this manuscript we tested whether 
or not communities inside the dome were less vulnerable to Cd toxicity than those outside 
the dome. 
 Higher quantities of biomass, higher toxicity thresholds of the microbial 
communities, and perhaps greater ligand production inside the dome, may prevent 
toxicity to upwelled Cd in this region, relative to the oligotrophic waters.  Bottle 
incubation experiments with Cd additions ranging from 0.5 to 5 nM resulted in reduced 
chlorophyll a outside of the dome relative to control treatments, but showed no reduction 
in chlorophyll a inside the dome, consistent with this hypothesis.  Moreover, tracer 
uptake experiments were conducted with the intermediate-abundance stable isotope 110Cd 
at stations within and without the dome, in which variations with depth and time were 
examined.  Cd totals were measured shipboard and in the lab using anodic stripping 
voltammetry, showing depletion of total Cd in the surface waters and increased 
concentrations with depth.  Cd uptake was greatest within the upper 40 m of water inside 
the dome, decreased with depth and increased with time.  Uptake correlated positively 
with chlorophyll a concentrations.  Together, these experiments suggest uptake of Cd into 
the microbial loop in the upper water column both in and out of the Costa Rica Dome, but 
show that Cd toxicity was not induced within the dome (presumably due to a higher 
amount of biomass in that region) and that perhaps Synechococcus has a lower sensitivity 
to Cd relative to Prochlorococcus outside of the dome. 
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INTRODUCTION 

Phytoplankton and Cadmium in the Marine Environment 

Marine phytoplankton are important contributors to primary productivity and 

have been a vital part of the ecosystem for billions of years (see page 11 in Chapter 1 for 

a more detailed discussion).  Cadmium (Cd) is biogeochemical enigma, toxic but with a 

nutrient-like distribution in the ocean, implying biological uptake and regeneration at 

depth.  The details of the relationship between marine phytoplankton and Cd are still not 

well understood.   

Cd is a trace metal with concentrations ranging from 1 to 1,100 pM in the open 

ocean (Bruland, 1980).  Cd profiles are nutrient-like, resembling phosphorus profiles; 

concentrations are depleted in surface waters, increase with depth, and are fairly constant 

in deep waters (Boyle et al., 1976; Bruland, 1980; Boyle, 1988).  The ‘kink’ noticed in 

plots of dissolved Cd:PO4
3- ratios has been the topic of much discussion in the literature.  

Some conclude it is an artifact of fitting straight lines to seawater data caused by 

preferential extraction of Cd relative to P in those waters, without providing a mechanism 

(Elderfield and Rickaby, 2000).  One mechanism is a slightly deeper regeneration cycle 

for Cd than for P (Boyle, 1988).  Others propose that the injection of Cd-depleted high 

latitude Southern Ocean waters into intermediate depths of the global ocean may be the 

mechanism (Frew and Hunter, 1992).  Further Southern Ocean data drew these authors to 

add formation of high-Cd Antarctic bottom waters near the Antarctic continent and 

remineralization of low-Cd-P detritus from biota produced in waters formed at the 

subtropical convergence as two additional mechanisms (Frew and Hunter, 1995).  Others 

have proposed that the low Cd: PO4
3- ratios in the iron-depleted waters of the Southern 

Ocean and subarctic Pacific are caused by high levels of Zn depletion, which induce high 

levels of Cd uptake by phytoplankton (Sunda and Huntsman, 2000).  Yet others have 

proposed the preferential removal of Cd relative to PO4
3- in Fe-limited waters is the result 

of chronic Fe limitation reducing phytoplankton growth rates relative to non-Fe limited 

phytoplankton, while not affecting Cd uptake rates, thereby causing the kink (Cullen, 

2006; Lane et al., 2009).   
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Like most other trace metals in surface waters, Cd is complexed by strong organic 

ligands as mentioned in Chapter 1 (Bruland, 1980; Bruland, 1992; Morel et al., 2003; 

Ellwood, 2004).  The speciation of Cd and other trace metals determines their 

bioavailability (Hunter et al., 1997).  Bioavailability refers to the ability of a substance to 

be taken up into a cell.  If a molecule is not bioavailable then it cannot act as either a 

nutrient or a toxin.  Due to the dissociation of trace-metal complexes, however, 

bioavailability may ultimately become a kinetic concept as discussed by Morel et al. 

(2003). 

For a detailed discussion of the toxic effects of Cd to organisms in culture, 

relationship to Zn and a nutritive use of cadmium in a carbonic anhydrase of a eukaryotic 

diatom see pages 19-20 in Chapter 1.  In work studying toxicity of copper to 

cyanobacteria, Prochlorococcus were inhibited at free Cu2+ that did not affect 

Synechococcus, although high-light adapted Prochlorococcus were more copper resistant 

than low-light adapted Prochlorococcus (Mann et al., 2002).  In addition, 

Prochlorococcus has less genes annotated that cope with metal stress than 

Synechococcus, including less metal efflux pumps (Palenik et al., 2003) and no genes for 

metallothionein. 

The Costa Rica Upwelling Dome 

The Costa Rica Upwelling dome is a tropical thermocline dome located near 9oN 

90oW, with a diameter ranging from 100 to 1000 km.  Uniquely fed by a coastal wind jet, 

it is seasonably predictable, characterized by a shoaling of the thermocline by local 

cyclonic wind stress curl off of the coast during February and March.  It separates from 

the coast during May-June and expands to the west during July-November.  The dome 

produces a habitat with high phytoplankton and zooplankton biomass relative to that of 

surrounding tropical waters (Fiedler, 2002) (Figure 2.1).  Interest in the dome began with 

observation of the physical oceanography by Wyrtki 1964, nutrient distributions by 

Broenkow in 1965, wind generation of the dome by Hofmann et al. 1981, and turned to 

the consideration of autotrophic picoplankton by Li et al. 1983.  The increased primary 

productivity, biological effects, and phytoplankton assemblages of this feature continue 
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to intrigue scientists (Fiedler, 2002; Franck et al., 2003; Saito et al., 2005).  The highest 

cell reported cell densities of Synechococcus have been recorded in the dome, varying 

from 1.2 x 106 and 3.7 x 106 cells mL-1 (Saito et al., 2005).  These high cell densities 

make the dome an ideal place to observe microbial community processes dominated by 

Synechococcus. 

 
110Cd Enriched Stable Isotopes and Incubation Techniques to Examine Bioavailability 

The eight stable isotopes of Cd range in natural abundance from 0.89 (108Cd) to 

28.73% (114Cd) (Figure 2.2). In this study, 110Cd, with a natural abundance of 12.49%, 

was used as a tracer of Cd uptake into the particulate fraction (> 0.2 µm).  110Cd can be 

traced by an increase in concentration and deviation of samples from natural isotope 

abundance ratios (Table 2.1).  Previously, uptake experiments have involved radiotracers 

such as 65Zn, 55Fe, 59Fe or 109Cd (Morel et al., 1994; Sunda and Huntsman, 1995; Cullen 

et al., 1999; Hutchins et al., 1999).  Recently, low abundance stable isotopes of other 

elements have been used as tracers to study processes such as adsorption/desorption of 

particulate Cu, Zn, and Ni in estuaries (Gee and Bruland, 2002), bioaccumulation of Hg 
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in lakes (Pickhardt et al., 2002), exchange of Fe and Zn between soluble, colloidal, and 

particulate size-fractions in shelf waters (Hurst and Bruland, 2007), and Cd and Cu 

uptake in a freshwater snail (Croteau and Luoma, 2007).  Using stable isotopes over 

radiotracers affords many advantages including increased safety, ease of shipboard use 

clearance, and relatively felicitous waste disposal.  This is the first reported study to use 

stable isotopes of Cd as a tracer of uptake in oceanic environments.   

 

 
One goal of this study was to demonstrate that 110Cd can be used to trace the 

movement of dissolved 110Cd2+ to the particulate phase.  Ideally, this transfer would 

represent biological uptake of bioavailable Cd.  There are limitations in terms of 
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measuring biological uptake of Cd into cells.  One must consider the definition of uptake 

and what it means to measure uptake in an environmental sample.  The word “uptake” 

refers to the act of absorption, more specifically in biological terms, into a living 

organism.  From the present field study, no distinction can be made between i) Cd 

absorption into cells, ii) Cd adsorption to the surface of cells, iii) Cd adsorption to non-

living particulate organic matter, and iv) Cd adsorption to particulate inorganic matter.  In 

this study, the word “uptake” refers to the absorption of dissolved Cd into the particulate 

fraction, presumably into the cells of the phytoplankton community (i).  Biological 

uptake (i) is likely to dominate the signal (due to the abundance of actively growing 

autotrophic cells in the photic zone); however, the methods of this study do not allow for 

the distinction between these four options.  One disadvantage of this method is that if the 

cells are Zn or Cd limited, the addition may stimulate growth.  To our knowledge, Cd 

limitation has never been shown in any organism.  It is also notoriously difficult to limit 

cyanobacteria for Zn, although it can be easily achieved with diatoms.  Another goal of 

this study is to show that one 24-hr timepoint can be adequately used to measure Cd 

uptake as opposed to a time course or shorter-term experiment.  Because casts at sea can 

occur around the clock, uptake rates may be affected by whether or not it is daylight 

when the incubation starts.  In the microbial community different microorganisms may be 

actively taking up molecules at different points in a diel cycle.  Allowing the sample to 

incubate with Cd over one diel cycle removes some of the concern of differential uptake 

due to time of day.  

The disparity in toxicity thresholds between eukaryotic diatoms and among 

cyanobacteria, the reported nutritive use of Cd in a eukaryotic marine carbonic 

anhydrase, and the reports of organic ligands being produced in the Costa Rica Dome 

microbial community led to the investigation of Cd toxicity to natural phytoplankton 

assemblages.  This location allowed a comparison between communities dominated by 

Synechococcus and Prochlorococcus.  Observed toxicity to Cd treatments suggests that 

added Cd is bioavailable and entering cells, whereas no toxic effects suggest that added 
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Cd is either perhaps less bioavailable, that is bioavailable yet taken up and detoxified, or 

that the same dosage affected different subsets of the microbial community differently.  

Bioavailable refers to the ability of a chemical species to be absorbed into a cell 

and can be thought of as a spectrum ranging from more to less bioavailable.  Some 

chemical species may be more bioavailable; for example, inorganic Cd may be more 

bioavailable than organically complexed Cd, although the bioavailability of organically 

complexed Cd is not known.  In addition, the dissociation of trace-metal complexes over 

time can affect bioavailability (Morel et al., 2003).  Also, different chemical species can 

be more or less bioavailable to different microorganisms.  As mentioned in Chapter 1, 

toxic effects in culture have been observed to be proportional to the summation of 

inorganic species (Sunda, 1988), although for copper and iron, organic ligands have been 

shown to be bioavailable (Hutchins et al., 1999; Maldonado et al., 1999; Quigg et al., 

2006 and Semeniuk et al., 2009). 

Toxicity is another biological term with a plurality of meanings.  Toxicity can be 

considered the deleterious effects of a substance to an organism.  Toxicity itself refers to 

the degree of being poisonous, or degree of harmful effects produced by a substance in an 

organism.  Toxic effects can range from decreased performance to death.  In general, 

even a metal that at normal levels has nutritive properties in large enough quantities can 

cause toxicity.  In this chapter, the word “toxicity” will be used to indicate decreased 

performance of bottled phytoplankton assemblages in terms of decreased chlorophyll a 

concentrations relative to a control treatment with no added Cd. 

There is also another, less well known toxicological dose response model called 

hormeisis.  The hormetic dose-response curves can be considered in two ways, the first is 

a low-dose stimulatory and high-dose inhibitory response to physiological processes such 

as growth and the second is a low-dose reduction and high-dose enhancement of adverse 

effects such as carcinogenesis (Calabrese, 2005).  The concept of hormeisis is especially 

relevant to both the study of Cd and of cyanobacteria in particular because Cd may be a 

nutrient at low concentrations and is also known to be toxic at higher concentrations and 
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because cyanobacteria show responses at low dosages.  In the case of Cd, the hormetic 

response may be due to a pulse of cellular Zn release due to Cd exposure. 

Cell size and natural vs. laboratory conditions can make a difference in the 

sensitivity of organisms to toxic substances.  Prochlorococcus cells are smaller than 

Synechococcus cells.  In considering sensitivity of organisms to toxic substances, a recent 

study by Echeveste et al. (2010) showed that smaller phytoplankton cells were more 

sensitive to exposure of polycyclic aromatic hydrocarbons (PAHs) than larger ones, 

particularly Synechococcus and Prochlorococcus and that natural communities were 

more sensitive to PAHs than cultures of phytoplankton.   

 The Costa Rica Upwelling dome in the summer of 2005 provided an ideal natural 

laboratory in which to compare a unique, Synechococcus-dominated environment to an 

oligotrophic, Prochlorococcus-dominated one.  The cruise track included stations inside 

and outside the dome, allowing for comparisons between different phytoplankton 

assemblages.  This study aims to address the duality of Cd as a nutrient or toxin in the 

marine environment by considering Cd bioavailability from multiple angles, using the 

tools of 110Cd uptake experiments, toxicity studies, biological parameters and natural total 

dissolved and labile Cd measurements. 

 

METHODS 

Preparation of Plasticware 

 All sampling bottles and materials were rigorously cleaned to avoid metal 

contamination.  All cleaning took place in a Class 100 clean room.  Bottles were rinsed 

with 18.2 mΩ Milli-Q (Millipore) water soaked overnight in 1% citranox, rotated, soaked 

overnight, then rinsed seven times with Milli-Q water.  The bottles were filled with 10% 

HCl (Baker instra-analyzed) by volume and soaked for a minimum of a week, rotated, 

and soaked for another week.  Bottles were rinsed seven times with pH 2 HCl (Baker 

instra-analyzed) and stored double-bagged in plastic zip bags.  Preparation of acid-clean 

tubes for holding water for nutrient analysis progressed the same as the trace-metal clean 

ones with the following exception.  Instead of individually filling each tube, tubes were 
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soaked in a 10% HCl (Baker instra-analyzed) by volume bath for a week with stirring to 

ensure exposure of every surface to acid. 

Sample Collection 

 Collection occurred during Cruise KN 182-05 aboard the R/V Knorr, July 17-29, 

2005 from the Costa Rica Upwelling Dome (Figure 2.1, Table I.1).  Water samples were 

collected using modified 10 L Go-Flo bottles (General Oceanics) suspended on a Kevlar 

line triggered with a Teflon messenger.  Teflon coated O-rings replaced the standard O-

rings and Teflon plug valves replaced the standard stopcocks in the modified Go-Flo 

sampling devices (Bruland et al., 1979).  Samples for electrochemical analysis of Cd 

totals were pressure-filtered through 142 mm, 0.4 µm polycarbonate Nuclepore filters 

housed in a polycarbonate “filter sandwich” and stored in trace-metal clean polyethylene 

bottles.  Samples for nutrient analysis were stored frozen in acid-cleaned 50 mL 

centrifuge tubes until analysis by Paul Henderson of the Nutrient Facility at WHOI.  

Water samples for time course stable isotope uptake experiments and toxicity 

experiments were collected using a trace-metal clean diaphragm pump that fed into a 

fifty-liter carboy in a positive pressure clean room environment made of laminar flow 

hoods and plastic sheeting. 

Chlorophyll a Estimation 

 Shipboard chlorophyll a measurements were made following the JGOFS 

procedure involving filtration onto 47 mm GF/F filters (Whatman), acetone extraction, 

acidification, and measurement on a fluorometer (JGOFS, 1994).  Size-fractionated 

measurements were made using 2 and 10 µm filters.  A Picofluor hand-held fluorometer 

was used.  GF/F filters slated for analysis in the lab were folded in half, wrapped in 

aluminum foil and frozen until analysis.  A TD 7000 fluorometer was used and was 

calibrated using an Ultrospec 2100 pro and a chlorophyll a standard (Sigma).  Calibration 

of lab to shipboard chlorophyll data was performed in triplicate samples analyzed both 

shipboard and in the lab. 
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Flow Cytometry 

 Flow cytometry samples were collected and preserved in 0.125% glutaraldehyde 

(Tousmis) incubated for 10 minutes in darkness and flash-frozen in liquid nitrogen.  

Samples were thawed in a water bath at 22oC for 5 minutes before analysis on an Influx 

cell sorter (Cytopeia) using 2 µm fluorescent beads as an internal standard. 

Cd2+ Addition Experiments 

Bottle incubation experiments were performed with 0, 0.5, 1, 1.5, and 5 nM total 

Cd2+ treatments in 1 L polycarbonate bottles with water from 8 or 15 m depth.  These 

concentrations are the total concentration of Cd2+ added and should be roughly equivalent 

to the final concentration assuming the original water was devoid of Cd, no sorption to 

the walls of the bottle, and relatively little total incorporation into particles.  Cd stocks 

were prepared from 3CdSO4
.8H2O and diluted with Milli-Q and 10% HCl (Seastar) to pH 

2 in polymethylpentene volumetric flasks.  Bottles were cleaned between stations by 

rinsing, shaking and briefly soaking in 10% HCl, followed by five rinses of pH 2 HCl 

(Baker instra-analyzed).  Cd2+ additions were not pre-equilibrated with existing seawater, 

so the labile Cd could vary depending upon the amount of natural ligands that may have 

been present in the seawater previous to addition.  Each treatment was done in triplicate 

and carried out in a positive pressure clean room environment.  Bottles were incubated in 

an on-deck seawater flow-through incubator made with blue Plexiglass (35% 

transmittance), the same light level for all depths.  The Station 5 experiment incubated for 

four days, whereas experiments performed at Stations 11, 14, and 17 incubated for three 

days.    Time zero chlorophyll a measurements for Station 5 and 11, as well as final 

chlorophyll a for Station 5 were performed shipboard.  Time zero samples for Stations 14 

and 17 as well as time final samples from Stations 11, 14, and 17 were frozen and 

analyzed in the laboratory on land. 
110Cd Stable Isotope Uptake Experiments 

When choosing a tracer, the relative abundance as well as ease of measurement 

need be considered.  110Cd is intermediate in abundance and has a small potential for 

interference.  106Cd, 108Cd, and 116Cd have isobaric interferences from major Pd (106Pd: 
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~27%) or Sn (116Sn: ~14%) isotopes. 112Cd and 114Cd have isobaric interference with 

minor Sn nuclides with less than 1% relative abundances.  110Cd and 113Cd may have 

potential interferences with Pd and In, respectively (Ripperger and Rehkämper, 2007). 
111Cd has no isobaric interferences and would be a more ideal tracer, but 110Cd was 

readily available and thus used.  The Cd isotope spike was prepared by dissolving 
110CdO2 (Oak Ridge National Laboratory) in 5% HNO3 (Seastar Baseline).  Dilutions 

were made using Milli-Q.  The spike was analyzed by ICP-MS to comprise 0.1 nM 110Cd, 

0.0019 nM 111Cd, and 0.001 nM 114Cd.  When added to filled 250 mL bottles, the added 

concentrations were 120 pM 110Cd, 1.9 pM 111Cd, and 0.73 pM 114Cd.    

An overall schematic for analyses associated with 110Cd stable isotope uptake 

experiments is displayed in Figure 2.3.  Samples for dissolved Cd analyses were filtered 

through a 0.4 µm polycarbonate Nuclepore filter and stored in trace-metal clean 

polyethylene bottles until analysis by anodic stripping voltammetry (ASV).  Experiments 

to discern 110Cd particulate uptake were performed at depths varying from 8-600 m.  

Bottles were incubated for 24 hours.  Time course 110Cd uptake experiments involved 

bottles being harvested after a combination of 3, 6, 12, 18, 24, 36 and 48 hours.  All spike 

additions and consequent filtrations were carried out in a positive pressure clean room 

environment.  Bottles were incubated in the on-deck incubator.  The 120 pM 110Cd2+ 

spike was added to 250 mL polycarbonate bottles filled with unfiltered seawater and 

sealed tightly.  Bottles were immediately transferred to the incubator. 

Collection of biomass occurred by filtration of 200 mL of water at 5 psi onto acid- 

cleaned 0.2 µm polycarbonate GE Osmonics filters.  The use of a 1 mL seawater rinse 

was implemented from Station 11 onwards (this did not appear to affect the results), and 

appropriate blanks were collected.  Filters were stored frozen in trace-metal clean 1 mL 

tubes until lab analyses.  Filter towers were rinsed with pH 2 HCl between samples and 

with 10% HCl (Baker instra-analyzed) at the end of each day.  Filter blanks, filter tower 

blanks (placing the filter onto a cleaned tower) and seawater rinse blanks were collected 

periodically throughout the cruise.  Polycarbonate bottles were cleaned between 

experiments with a rinse, shaking and a brief soak in 10% HCl, followed by a pH 2 HCl 



  
 46 
 
 
 

rinse (Baker instra-analyzed).  67Zn additions were also performed.  These data are not 

discussed here, but the 67Zn particulate results at each depth were used as the preexisting 

particulate Cd for calculating uptake in the 110Cd-spiked sample.
110Cd Sample Acid Digestion and Inductively Coupled Plasma Mass Spectrometry 

Analysis 

All work was performed in a Class 100 clean room under a laminar flow hood.  

Acid digestion methodologies were developed after protocols reported in the literature 

(Cullen and Sherrell, 1999; Ellwood and Hunter, 1999, 2000; Hurst and Bruland, 2008).  

Filters were removed from the freezer and transferred to trace metal clean Teflon 

or polypropylene vials.  The filters were digested for 4 hours at 120oC in 50% HNO3 

(Seastar Baseline) and 2.5% HF (Seastar Baseline) and the filters removed.  After 

evaporation just to dryness, the residue was resuspended in 5% HNO3 (Seastar Baseline) 

with a 1 ppb indium internal standard and run on an Element II ICP-MS in low resolution 

mode, using an Aridus desolvator system. 

Standards consisting of 1, 2, 3, and 4 ppb total Cd and Zn (8.9-35.6 nM) with a 

1.6 ppb In internal standard were made and used to calculate Cd concentrations after ICP-

MS analysis.  Natural Cd isotope abundances of the standards were assumed to calculate 

concentrations of 110Cd, 111Cd and 114Cd.  Note that this method uses an overabundance 

of 110Cd and should greatly outweigh any natural fractionation signals.  It is not 

comparable to recent studies of natural Cd isotope fractionation using multi-collector 

ICP-MS, which can detect deviations in the ratio of 114Cd/110Cd with the precision of 2-6 

parts per 10,000 (Ripperger and Rehkämper, 2007).  Note also that there are response 

biases in ICP-MS that can cause a slight deviation of the measured isotopic ratio to 

deviate from the natural abundance isotope ratio.  These deviations were not corrected for 

in these data and may be a few percent. 
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Anodic Stripping Voltammetry Analyses of Total Dissolved Cadmium 

 Total Cd measurements were performed using a mercury-plated rotating disc 

electrode (RDE).  Protocols were based after Fischer et al., 1999 and Ellwood, 2004.  At 

the beginning of each day, the RDE was polished with AlO2 and plated with Hg.  Plating 

occurred in a solution of 10 mL Milli-Q water, 50 µL thiocyanate, 33 µL 3 M KCl (Fluka 

puriss), and 1 mL 1000 ppm Hg reference solution (Fisher).  The solution was purged for 

10 minutes and plated at a current of -1.5 V for 10 minutes.  Total Cd concentrations 

were determined from samples that were UV irradiated for 2 hours by standard additions 
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of 250 pM Cd prepared from Fisher certified stock solutions diluted in pH 2 Milli-Q 

water and polymethylpentene volumetric flasks.  A step potential of 9 mV, deposition 

potential of -1.5 V, and scan time of 3 minutes were used during the analyses.  The 

detection limit is approximately 15 pM. 

 

RESULTS 

Defining Inside and Outside the Dome 

The dome is biologically defined in this study as having an order of magnitude or 

greater Synechococcus cell numbers than outside the dome, in addition to the physical 

oceanographic context of a shoaled thermocline.  Stations inside the dome had 

Synechococcus cell numbers equal to or greater than 2 x 105 cells mL-1 and an abundance 

of Synechococcus relative to Prochlorococcus by at least a factor of three to one.  

Stations outside the dome are dominated by Prochlorococcus by at least a factor of 3 and 

have Synechococcus cell numbers on order of 3.5 x 104 or less, almost an order of 

magnitude less than inside the dome.  Stations 7, 11, 13 were considered to be inside the 

dome, Station 5 was intermediate and Stations 14, 15 and 17 were outside the dome.  

Station 5 is considered intermediate because it has Synechococcus cell numbers on order 

of 1 x 105, and almost equal cell numbers of Synechococcus and Prochlorococcus.  

Prochlorococcus dominates Synechococcus at Stations 14, 15, and 17. 

Calculating Cadmium Uptake Using 110Cd 

Total Cd uptake was calculated using the following equation, assuming that the 

spike was as available as the existing Cd: 

 
110Cdsample (in units of pmol L-1 d-1) is the particulate 110Cd measured using ICP-MS of the 

filter, normalized to volume of seawater and one day of incubation.  A difference 

between radiotracers such as 57Co is that there may be 110Cdsample already in the 

particulate fraction.  This was accounted for by subtracting the particulate blank, 
110Cdblank.  Particulate 110Cdblank will hereafter be referred to as preexisting particulate 
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110Cd.  The particulate blank bottle in these experiments had 67Zn added, but no Cd spike.  

The 67Zn spike was confirmed to contain virtually no 110Cd, 111Cd, or 114Cd.  The 67Zn 

added to this bottle should not affect the preexisting Cd.  Preexisting Cd is measured in 

units of pmol L-1 d-1.  It is assumed that the particulate blank is in steady state, i.e. it 

represents the Cd already in the particulate fraction and any possible natural uptake that 

could occur during incubation for twenty-four hours is negligible.  Dividing the 

particulate 110Cd by the total dissolved 110Cd yields the fraction of 110Cd that has moved 

from the dissolved pool to the particulate pool per day.   The total dissolved 110Cd is 

comprised of the dissolved 110Cd added as a spike plus any natural, preexisting dissolved 
110Cd (Figure 2.4c).  The natural preexisting 110Cd was calculated by multiplying the total 

dissolved Cd measured by ASV (Figure 2.4a) by the natural abundance of 110Cd, 0.1249 

(Figure 2.4b). 

 When there is very little natural total dissolved Cd, as occurs in the surface 

waters, 110Cdnatural approaches zero, Cdtotal approaches 110Cdspike and they cancel out of the 

equation.  Total Cd uptake is then represented entirely by 110Cd uptake.  One could then 

consider this a sort of potential uptake, since the natural dissolved Cd << 110Cdspike at 

these depths.  As natural total dissolved Cd increases with depth, the uptake of the tracer 

is diluted (Figure 2.4c).  Using one group of procedural blanks measured using ICP-MS 

(n = 4), the detection limit for particulate Cd uptake rate with one standard deviation error 

is 0.021 + 0.007 pmol L-1 d-1. 

Depth profiles of 110Cd uptake rate, total dissolved Cd, total and size-fractioned 

chlorophyll a, and Prochlorococcus and Synechococcus cell numbers at Station 11, inside 

the dome are shown in Figure 2.4, data in Appendix I (Table I.2).  The dissolved 110Cd 

spike added to the bottle from each depth (120 pM) is shown in Figures 2.4a, b, and c. 

The dissolved 110Cd spike is greater than the natural, total dissolved Cd at depths 

shallower than 40 m (Figure 2.4a).  The spike is greater than the natural dissolved 110Cd 

at every depth (Figure 2.4b).  When the spike is added, it contributes a significant amount 

of the total dissolved Cd at shallow depth, but the contribution decreases with depth as 

total dissolved Cd increases.  110Cd particulate uptake rates are detectable shallower than 
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40 m (Figure 2.4d), consistent with total dissolved Cd depletion (Figure 2.4a) and higher 

biomass in surface waters (Figure 2.4d, e). 
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Isotope ratios can also be examined to track uptake of the spike, in addition to 

increased amounts of 110Cd in the particulate phase.  A depth profile of particulate isotope 

ratios from Station 11, inside the dome, is shown in Figure 2.5, data in Appendix I (Table 

I.4).  Particulate isotope ratios of 114Cd/110Cd and 111Cd/110Cd are lower relative to natural 

abundance (Figure 2.5a), whereas in the preexisting particulate Cd samples, isotope ratios 

are relatively consistent with natural abundance ratios (Figure 2.5b).  Error bars represent 

propagation of root mean square deviation of one measurement, instrument counting 

error.  Similarly, in the 110Cd time course experiment for Station 11, 114Cd/110Cd and 
111Cd/110Cd particulate ratios are lower than natural abundance and decrease with time 

(Figure 2.6, Table 2.5).  
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Outside the dome, a similar phenomenon is observed.  Depth profiles of 110Cd 

uptake, total dissolved Cd, total and size-fractioned chlorophyll a and Prochlorococcus 

and Synechococcus cell numbers at Station 17, outside the dome are shown in Figure 2.7, 

data in Table I.3.  110Cd particulate uptake rates are detectable shallower than 40 m 

(Figure 2.7a, d), consistent with total dissolved Cd depletion (Figure 2.7b) and higher 

biomass in surface waters (Figure 2.7c, e, f).   
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Particulate Cd uptake in pmol L-1 vs. time is plotted in Figure 2.8 for time course 

experiments at Stations 5, 7, 11, 13, 15, and 17.  Slope of the line yields a Cd uptake rate 

in pmol L-1 d-1.  These calculations yield similar uptake rates to those calculated using a 

single 24-hour time point (Table 2.2), suggesting that using one 24-hour time point at a 
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given station and depth is an adequate estimate of total Cd uptake.  These samples are not 

corrected for natural dissolved Cd because it was not measured at three of the stations 

(Stations 7, 13, and 15) and total dissolved Cd was undetectable at the other three stations 

(Stations 5, 11, and 17).  Because total dissolved Cd was undetectable, 110Cd uptake is 

equal to total Cd uptake and this assumption is extended to the other three stations.  

These samples are also not corrected for preexisting particulate Cd.  See Figure 2.9 for a 

brief discussion on the need to correct for preexisting particulate Cd. 
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Cadmium Addition Experiments  

At the initial time of Cd addition, Station 11, inside the dome, had three times 

more total chlorophyll a than the other stations; the total concentration was 366 ng L-1.  

Stations 5, 14, and 17 had relatively similar initial chlorophyll a concentrations of 115, 

78 and 124 ng L-1 respectively (Figure 2.10a, Table 2.3).  Stations 5 and 11, intermediate 

and inside the dome have higher Synechococcus cell numbers, 1.3 x 105 and 3.6 x 105 

cells mL-1, relative to Stations 14 and 17, which are outside the dome and have 

approximately an order of magnitude less Synechococcus cells, 3.5 x 104 and 2.9 x 104 

cells mL-1, respectively (Figure 2.10b, Table 2.3).  Prochlorococcus cell numbers are on 

the order 105 cells mL-1 at all four stations, so Stations 14 and 17 have an order of 

magnitude more Prochlorococcus than Synechococcus (Figure 2.10b, Table 2.3).  
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The control treatments in all stations increased in chlorophyll a concentration 

relative to initial conditions by 13%, 105%, 88% and 247% for Stations 5, 11, 14, and 17 

respectively (Figure 2.11, compare solid to dashed lines).  Note that Station 5 effectively 

did not grow, the initial and final chlorophyll a concentrations are within error.  Other 

incubations performed on this same cruise at this station investigating the effects of 

cobalt, iron and DFB (desferrioxamine B) showed an approximately two-fold decrease in 

Synechococcus cell abundance in the control treatment at harvest compared to initial 

abundance, with an approximately two-fold increase in Prochlorococcus cell abundances 

in the control (Thompson, 2009).  When Cd concentrations were artificially enhanced by 

0.5 to 5 nM in three to four day bottle incubations, chlorophyll a was reduced relative to 

the control by 10% for at least three of the Cd treatments at all four stations (Figure 2.11, 
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Table 2.3).  At Station 5, chlorophyll a was reduced by 10% under 0.5, 1.5, and 5 nM 

Cd2+ additions (Figure 2.11a, Table 2.3). At Station 11, chlorophyll a was reduced by 

10% under 0.5, 1, 1.5, and 5 nM Cd2+ additions (Figure 2.11b, Table 2.3). At Station 14, 

chlorophyll a was reduced by 10% under 1, 1.5, and 5 nM Cd2+ additions (Figure 2.11c, 

Table 2.3). At Station 17, chlorophyll a was reduced by 10% under 0.5, 1, 1.5, and 5 nM 

Cd2+ additions (Figure 2.11d, Table 2.3).  Chlorophyll a was reduced relative to the 

control by 50% under 5 nM Cd2+ addition at Station 17 (Figure 2.11d, Table 2.3).  A 

greater decrease in chlorophyll a with increasing Cd2+ additions was observed at Stations 

14 and 17 (Figure 2.11c and 2.11d). 
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110Cd Uptake at Seven Stations Compared to Biological Parameters 

As shown in Figure 2.12a, c, higher uptake rates occurred at Stations 7, 11 and 13, 

6.1, 2.8 and 2.8 pmol L-1 d-1, respectively, inside the dome than at intermediate Station 5, 

1.3 pmol L-1 d-1 and the stations outside the dome, 14, 15, and 17, 0.2, 0.96, and 1.9 pmol 

L-1 d-1, respectively (Table 2.4).  Linear regressions of particulate 110Cd uptake vs. 

biological measurements of Synechococcus and Prochlorococcus cell abundances and 

total chlorophyll a for maximum particulate 110Cd uptake depth at these seven stations 

yielded weak to moderate correlations.  The highest correlation was with total 

chlorophyll a, having an r2 value of 0.75.  
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DISCUSSION 

Utility of 110Cd Uptake Method 

 The results of this study suggest that 110Cd can be successfully used as a stable 

isotope tracer in marine environments.  The 110Cd uptake data suggest that at least a small 

fraction of 110Cd is bioavailable when a 120 pM spike is added to seawater and incubated 

for 24 hours, assuming that this method measures actual biological uptake into a cell. 

Cadmium Addition Experiments  

Cd ligand concentrations measured previously in the North Pacific had a 

concentration of 0.1 nM (Bruland 1992); the only other Cd ligand data published are 

from off the coast of New Zealand, with ligand concentrations of 1-2 nM (Ellwood, 

2004).  Toxicity was thus expected to be observed at 5 nM total Cd in experiments at all 

stations.  Concentrations of total Cd added were chosen in search of a toxicity threshold.  

Cd addition experiments were run longer (multiple days) than uptake experiments (one 

day) to allow multiple day/night cycles and chance for growth of the bottled organisms 

over time. 

Of the four stations at which Cd addition experiments were performed, Station 11 

stands out in terms of having the highest initial chlorophyll a concentration of the four 

stations by a factor of three.  When considering this variability in terms of toxicity 
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experiments, one may expect Station 11 to show a different result than the other three 

stations due a higher biomass taking up Cd and reducing the toxic effect.  This however, 

is not the case- Station 11 shows a result different from Stations 14 and 17 (Figure 2.11).  

Results from Stations 14 and 17 show a reduction in chlorophyll a with increasing Cd 

concentrations, a toxicity effect.  Stations 11 and also 5 show relatively constant 

chlorophyll a concentrations with increasing Cd concentrations, or at least no clear 

toxicity effect.  If not chlorophyll a, perhaps the fact that Station 5 did not grow in the 

control relative to initial conditions explains the deviation from expectation, or perhaps 

the presence of Synechococcus prevented toxicity at this station.    

Stations 5 and 14 had relatively similar initial conditions, although Station 14 

grew and Station 15 did not.  There are five noted differences: 1) Station 5 incubated for 

four days whereas the other stations incubated for three days, 2) Station 5 had about a 

factor of 1.5 less Prochlorococcus than Station 14, 3) Station 5 had a factor of 3.8 times 

more Synechococcus than Station 14, 4) Station 5 had undetectable Cd initially compared 

to 57 pM Cd2+ at Station 14, and 5) Station 5 water was collected from 15 m depth 

compared to 8 m for Station 14.  Considering these possibilities, an incubation difference 

of 3 or 4 days (1) is probably not going to affect growth or no growth of an experiment.  

The collection of water from different depths (5) would arguably affect the microbial 

community composition initially and also the affinity of that community for a particular 

light environment.  Bottles collected at 8 and 15 m were both incubated at the same 

percentage of ambient light in the on-deck incubator.  The differing initial concentrations 

of total dissolved Cd (4) is probably not the reason because Stations 11 and 17 

experiments showed growth and they also had initial concentrations that were below the 

detection limit.   This leaves differences in cyanobacterial cell numbers (2 and 3).  

A disparity in Synechococcus cell numbers is observed.  Although cell numbers 

are higher at Station 11 than at Station 5 by a factor of 2.8, 3.6 x 106 cells mL-1 and 1.3 x 

106 cells mL-1 respectively, both Stations 5 and 11 have significantly higher cell numbers 

than either of Stations 14 and 17 (Figure 2.11).  Station 5 and Station 11 have 

Synechococcus cell numbers greater than the oligotrophic stations by a factor of four and 
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eight respectively.  These data are consistent with the hypothesis that Synechococcus 

could be producing an organic ligand that binds the added Cd, making it less bioavailable 

and thus preventing toxicity.  Prochlorococcus dominates Synechococcus at Stations 14, 

15 and 17, and Stations 14 and 17 do show a toxic effect suggesting that Prochlorococcus 

may be more sensitive to Cd concentrations and/or may not be contributing an organic 

ligand to bind Cd.  Speciation measurements would help by directly measuring the 

concentration of organic Cd-ligand complexes.  Comparing inside and outside the dome 

toxicity results do suggest that the prevention of Cd toxicity to the phytoplankton 

community inside the dome is related to the increased presence of Synechococcus.  One 

explanation is the production of organic ligands by Synechococcus that result in a greater 

degree of complexation of Cd relative to outside the dome and another is that more 

phytoplankton biomass reduces the dosage that each cell would receive.  Both of these 

hypotheses are consistent with the data, although cannot be proven. 

The combination of 110Cd uptake experiments, Cd addition experiments, 

biological parameters, and natural total dissolved Cd measurements leaves us with some 

unanswered, tantalizing questions for the future: 1) What is the total microbial 

community at the different stations? 2) Is the Cd all taken up inside the cell? 3) Does a 

higher abundance of Synechococcus cells in the microbial community help prevent 

toxicity? 

Do kinetics affect uptake? 

 The rate of Cd uptake can be considered in terms of Michaelis-Menten kinetics.  

Put simply, the total uptake rate is directly proportional to a kinetic rate constant, the 

bioavailable Cd and the quantity of microorganisms.  Inorganic species of trace metals 

are typically bioavailable, as well as some organic forms.  This means speciation is 

crucial when contemplating bioavailability.  In this study, as the biological community 

and the 110Cd uptake rate decreased, the total dissolved Cd (and thus probably the 

bioavailable Cd) increased with depth.  This suggests that uptake was related to the 

presence of organisms.  The Cd addition experiments had a longer exposure to Cd at 

higher concentrations than uptake experiments. If cyanobacteria, as hypothesized, were 
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producing ligands, stations with low cyanobacterial biomass (outside the dome) would 

likely be unable to produce ligands at a fast enough rate to bind Cd and reduce toxicity 

and so high Cd treatments at these stations would show toxic effects. 

Microbial community composition 

 The entire microbial community composition is not known.  Chlorophyll a 

concentrations (a surrogate for total phytoplankton community) and size-fractionated 

chlorophyll a concentrations (gives an idea of diatoms vs. the smaller picocyanobacteria) 

were estimated.  The picophytoplankton, Prochlorococcus and Synechococcus, were 

counted using microscopy and flow cytometry.  Other members of the microbial 

community such as diatoms, bacteria, and Archaea were not enumerated and could 

potentially be contributors to Cd cycling processes.  A study by Franck et al., 2003 found 

that diatom abundances in the controls of three-day bottle incubation experiments in the 

Costa Rica Upwelling Dome were an order of magnitude lower than experiments 

conducted off the coast of central California.  The total number of diatoms and flagellates 

in the controls were around 450 cells per mL (Franck et al., 2003).  These low diatom 

abundances are consistent with the size-fractioned chlorophyll a data in this study, which 

show that the < 2 µm size fraction at Stations 11 and 17 is the greatest component of total 

chlorophyll a (Figures 2.4f, 2.6f; Tables I.2, I.3).  Diatoms could be responsible for some 

of the Cd uptake, but our data do not allow us to determine this. 

Cadmium flux - The supply of upwelled cadmium approximately equals uptake rate 

 The Cd supply at Station 11 from upwelling was estimated using a rate of 10-4 cm 

s-1 measured in this region by Wyrtki (1964), multiplied by the concentration difference 

between the total dissolved Cd measured at 100 m and the surface (Figure 2.13a).  The 

estimated uptake flux of dissolved Cd was estimated by calculating a depth integrated 

dissolved Cd consumption using measured Cd uptake rates (Figure 2.13b).  These two 

fluxes were each estimated to be on order of 5 x 104 pmol m-2 d-1.  This implies that the 

upwelled Cd is taken up into the particulate fraction, depicted as a green circle in Figure 

2.14.  Fluxes out of the surface box would be advection and export to both the mid- and 

deep ocean.  These processes were not investigated in this study.   
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CONCLUSIONS 

 In conclusion, results of 24-hour uptake studies suggest that 110Cd as a spike can 

successfully be used as an intermediate abundance, stable isotope tracer.  An increase in 

particulate 110Cd concentration in spiked samples relative to preexisting Cd and a 

decrease in 114Cd/110Cd and 111Cd/110Cd isotope ratios indicated the uptake of 110Cd in 

waters shallower than 40 m.  The uptake rate of Cd correlated positively with chlorophyll 

a concentrations.  Results of time course 110Cd uptake studies indicate uptake with time 

in spiked samples because the 110Cd concentrations increase and the 114Cd/110Cd and 
111Cd/110Cd isotope ratios decrease with time.  Linear regression analyses of 

concentration versus time in these studies also suggest that a 24-hour time point is an 

adequate measurement of uptake and demonstrate that considering preexisting particulate 

Cd in the form of a particulate blank in high biomass regions is necessary.  Depth 

integrated uptake estimates of total Cd consumption compared to estimated upwelling 

flux of Cd suggest that the dissolved upwelled Cd in the dome is taken up into the 

particulate fraction.  Cd addition experiments suggest that higher cell numbers of 

Synechococcus are related to prevention of Cd toxicity in the dome, but outside the dome 

with lower cell numbers of Synechococcus, in the cyanobacterial community dominated 

by Prochlorococcus, toxic effects are observed.  This suggests that the greater biomass 

and microbial community prevent toxicity of added Cd, perhaps by diluting the Cd 

throughout the community in the dome.  Outside the dome, Prochlorococcus is the 

numerically dominant member of the cyanobacterial community and may be more 

sensitive to Cd and the Cd is diluted less over the overall community.  Electrochemical 

measurements of total dissolved Cd demonstrate a nutrient-like profile and correlation 

with nutrients, as expected.  Together, these experiments suggest that uptake of Cd into 

the microbial loop occurs in the upper water column both in and out of the Costa Rica 

Dome, but show that Cd toxicity is not induced within the dome presumably due to a 

greater amount of biomass in that region and less sensitivity of that biomass to Cd.  
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Chapter 3 
 

Zinc-deprived coastal Synechococcus WH5701 show physiological and strong 
proteomic response to chronic cadmium stress 

 
Abstract 
Synechococcus sp. WH 5701 is a euryhaline, phycocyanin-rich, phycoerythrin lacking 
marine cyanobacterium.  It was isolated originally from Long Island Sound, a coastal 
environment with high trace metal availability and variable irradiance due to mixing.  To 
test the response of this organism to free cadmium (Cd), generally considered a toxin 
with one known nutritive use in a marine diatom, cultures were exposed to 4.4 and 44 pM 
free Cd2+.  Physiological measurements of cell counts, chlorophyll a and phycoerythrin 
fluorescence throughout growth, stationary and death phases show Cd had little effect on 
growth rates, but higher Cd concentrations caused an increase in mortality rates and 
maximum chlorophyll a fluorescence.  Global proteomic analysis of relative protein 
abundance at five time points throughout the entire growth curve revealed a greater 
abundance of ribosomal and photosystem I proteins during exponential growth relative to 
stationary phase.  Cd caused a two-fold or more increase in relative abundance of 
ribosomal proteins, arylsulfatases, cysteine metabolism and chlorophyll a biosynthesis 
proteins, among others, and a two-fold or more decrease in the relative abundance of core 
photosystem I, carboxysome-associated and hypothetical proteins during exponential 
growth, suggesting chronic Cd exposure had a great metabolic impact. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 74 
 
 
 

INTRODUCTION 

 Marine cyanobacteria play an important role in primary productivity and the 

evolution of the environment on earth as discussed on pages 13-14 of Chapter 1.  

Cadmium (Cd) and zinc (Zn) are trace elements with nutrient distributions in the ocean 

(discussed on pages 15-16 of Chapter 1) and have shown to have interactions in culture 

(discussed on pages 18-20 of Chapter 1).   

Synechococcus WH5701 is a marine subcluster 5.2, MC-B (Scanlan, 2003) 

cyanobacteria, originally isolated from Long Island Sound. It is euryhaline, phycocyanin-

rich, and lacks phycoerythrin II.  Not much culture work exists in the literature 

concerning WH5701 thus far and although the MC-A group is thought to be the dominant 

Synechococcus group within the euphotic zone of open ocean and coastal waters (Fuller 

et al., 2003 and references therein), recent studies on the diversity of Synechococcus 

strains isolated from the Baltic Sea show picocyanobacteria, very similar to WH5701 by 

16S rRNA-ITS (Haverkamp et al., 2009).  WH5701 is a good coastal environmental 

model because of the original isolation location and it may have arguably already been 

affected by increased anthropogenic inputs before isolation. 

 Cells are known to take up Cd even though it is not required for growth.  If cells 

do not require Cd, the destination of Cd inside a cell is of interest.  Metals are tightly 

regulated in cells and metal sensing is important (Waldron et al., 2009).  Cd can interfere 

with the metals calcium, zinc, and iron (Martelli et al., 2006).  In diatoms, Cd can be 

taken up through manganese and zinc transporters (Sunda and Huntsman, 2000).  

Experimental support in animal cells for Cd substituting for native metals is scarce at 

best, despite this being often proposed as the leading mechanism of Cd toxicity (Martelli 

et al, 2006).  Mechanisms of toxicity in photosynthetic organisms range from Cd 

replacing magnesium in chlorophyll in plants (Küpper et al., 1998) to Cd2+ binding 

reaction centers in Rhodobacter sphaeroides thereby reducing rates of electron transfer 

from photosystem II to QB (Okamura et al., 2000 and reference therein).   

Metallothioneins and low molecular weight thiols are a possibility for intracellular 

Zn storage and Cd detoxification are discussed on pages 20-24 of Chapter 1.  Low 
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molecular weight thiols have been produced by cultures of Emiliania huxleyi upon 

exposure to cadmium, zinc, and copper (Dupont and Ahner, 2005) and measured in the 

Galveston Bay (Tang et al., 2000) and the subarctic Pacific Ocean (Dupont and Moffett et 

al., 2006).  The possibility of low molecular weight thiols as a response to Cd is 

considered in this chapter 

In this chapter, the physiological and proteomic responses of the coastal 

Synechococcus WH5701 to chronic Cd stress under Zn deficient conditions will be 

presented, a condition not often encountered in the environment due to the greater 

relative abundance of Zn.  The biological function of an element can only be assessed 

properly against a background of deficiency state (Vallee and Ulmer, 1972).  It is 

notoriously difficult to limit cyanobacteria for Zn.  If Cd is interfering with Zn 

metabolism, these experimental conditions would be likely to reveal that situation.  Our 

physiological and proteomic data show that this coastal cyanobacterium does not appear 

much affected by the addition of Cd2+ during growth phase due to the similar growth rates 

of the Cd treatments to the no added Cd, but the change in relative abundance of proteins 

show that the exposure to Cd has a major impact on photosynthesis, protein synthesis, 

carbon fixation, and sulfur metabolism.  The physiological effects of Cd surface during 

stationary phase with an increase in maximum chlorophyll a fluorescence with the Cd 

treatments relative to the control and faster mortality rates.  This paper also provides a 

comprehensive view of the change in relative protein abundance throughout the growth 

curve of Synechococcus WH5701. 

 

METHODS 

Culturing and protein extraction 

 Axenic cultures of Synechococcus sp. WH 5701 obtained from J. Waterbury 

(Woods Hole Oceanographic Institution) were maintained in a PRO-TM media (modified 

from Saito et al., 2002) made with 75% oligotrophic seawater obtained from the 

oligotrophic South Atlantic ocean and prepared by microwave sterilization and the 

addition of chelexed and filtered nutrients (1.1 mM NO3
- and 65 µM PO4

3-) and EDTA-
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complexed metals (22.2 µM EDTA, 171 nM MnCl2, 5.7 nM Na2MoO4, 19 nM Na2SeO3, 

2.22 µM FeCl3, 19 nM CoCl2, 19 nM NiCl2).  Chronic Cd treatments had Cd added to a 

total concentration of 10 and 100 nM CdCl2, with the free concentrations estimated to be 

4.4 pM Cd2+ and 44 pM Cd2+, respectively, using thermodynamic data from EDTA 

stability constant data from Martell and Smith, 1993.  The ratio of Cd2+: CdTOT was 

calculated to be 1:2267.  This ratio in a PRO-TM media with 11.7 µM EDTA (Saito et 

al., 2002) was calculated to be 1:1216 (Saito et al., unpublished data) and 1:6026 in a 

media with 100 µM EDTA (Sunda and Huntsman, 1998).  The ratio of Cd2+ to the total of 

major inorganic species in a PRO-TM media with 11.7 µM EDTA (Saito et al., 2002) 

was calculated to be 1:36 (Saito et al., unpublished data).  The blank of the medium was 

not determined.  Previous researchers doing similar trace metal culture studies have 

assumed background metal concentrations of 100 pM for cobalt (Sunda and Huntsman, 

1995; Sunda and Huntsman, 1998; Saito et al., 2002), 900 pM for Zn (Sunda and 

Huntsman, 1995; Sunda and Huntsman, 1998) and 100 pM for cadmium (Sunda and 

Huntsman, 1998).  Cultures were grown in either 28 mL polycarbonate tubes or 1 L 

polycarbonate bottles under 30 µmol photons (µEinstein) m-2s-1 continuous white light.  

All plasticware was soaked for two days in a detergent, then two weeks in 10% HCl 

(Fisher, trace metal grade), rinsed with pH 2 HCl and then microwave sterilized.  Culture 

growth was monitored by a combination of chlorophyll a and phycoerythrin fluorescence 

and cell counting by microscopy.  Growth rates were calculated from the natural log of in 

vivo relative chlorophyll a fluorescence (n = 5). Mortality rates were calculated from the 

natural log of in vivo relative chlorophyll a fluorescence (n > 4).   For protein samples, 

approximately 150 mL of culture were harvested by centrifugation in a Beckman J2-21M 

centrifuge at 18,566 g for 30 min at 4oC, decanted, transferred into a microtube and 

centrifuged again at 14,000 g for 15 min at room temperature, decanted, and frozen at -

80oC.  

 Protein was extracted from the digestion of frozen whole cell pellets.  Sample 

tubes were kept on ice throughout the extraction process, unless otherwise noted.  Cell 

pellets were resuspended in 500 µL of 100 µM ammonium bicarbonate buffer solution, 
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pH 8.0, (AMBIC) ice cold.  Using a Branson sonifier 450, samples were sonicated on ice 

for 4 min at 70% duty with an output of 3.  After a 5 min pause, samples were sonicated 

for another 4 min.  Samples were centrifuged at 4oC at 14,000 g for 35 min.  200 µL of 

supernatant was precipitated overnight with 800 µL of -20oC acetone.   

Acetone-precipitated samples were centrifuged at 4oC at 14,000 g for 30 min and 

decanted.  One hundred µL of freshly made 7.5 M urea in AMBIC and 25 µL of AMBIC 

were added to the acetone-precipitated pellet.  Samples were incubated for approximately 

15 min at room temperature with periodic vortexing then resuspended by incubation for 5 

min at 95oC.  A 100 µL aliquot was removed and 5 µL of 200 mM dithiothreitol (DTT) 

in AMBIC was added and incubated for 1 hr at 56oC, shaken at 400 rpm.  The sample 

was vortexed and centrifuged at 14,000 g for 2 min.  Twenty µL of 200 mM 

iodacetamide in AMBIC was added and incubated for 1 hr at room temperature in the 

dark, shaken at 400 rpm. 20 µL of 200 mM DTT in AMBIC was added, mixed, 

centrifuged for 2 min as above, and incubated for 1 hr at room temperature, shaken at 400 

rpm.  After incubation, the sample was centrifuged for 2 min as above.  Total protein 

yield was assayed using the Biorad DC Protein Assay.  Trypsin (Promega) was 

reconstituted in 500 µL of 50 mM acetic acid and added in a trypsin to protein ratio of 

1:50.  The sample was mixed, vortexed, centrifuged for 2 min as above, and incubated for 

approximately 16 hours at 37oC, shaken at 400 rpm.   

 After trypsin digestion, the sample was vortexed, centrifuged for 2 min, and 20 

µL of LC-MS grade glacial acetic acid added.  Sample was evaporated by speed vacuum 

for approximately 3 h to a final volume of approximately 600 µL.  Sample was 

centrifuged at 14,000 g for 30 minutes and the supernatants collected.  Four µg of protein 

was added per injection. 

Liquid Chromatography-Mass Spectrometry (LC-MS) 

 The digests were analyzed by LC-MS using a Paradigm MS4 HPLC system with 

reverse phase chromatography, Thermo LTQ ion trap mass spectrometer and Microhm 

ADVANCE source (2 µL/min flow rate, 345 min runs, 150 mm column, 40 µL 

injections, water ACN gradient).  Each digest was injected three times for a total of 45 
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mass spectrometry runs.  Mass spectra were processed by SEQUEST and PeptideProphet 

with a fragment tolerance of 1.0 Da (monoisotopic), parent tolerance of 2.0 Da 

(monoisotopic), fixed modification of +57 on C (carbamidomethyl), variable 

modification of +16 on M (oxidation) and a maximum of 2 missed trypsin cleavages 

using a database including reversed proteins and common contaminants.  Spectral counts 

of 45 files were compiled in Scaffold 3 with a peptide false discovery rate of 1.7%, 

minimum peptide and protein confidence levels of 95 and 99%, respectively with a 

minimum of 2 peptides. (Peng et al., 2003; Zhang et al., 2006).  A spectral count is the 

number of times a particular peptide from a protein is sampled during an MS/MS 

experiment and is indicative of protein relative abundance.  Graphs are made with 

spectral counts of proteins that have a minimum of four identified peptides and the 

function assigned by using the Kyoto Encyclopedia of Genes and Genomes (KEGG).  

Tables are made by ratios of average spectral counts with at least one value greater than 

or equal to 5 spectral counts. 

 

RESULTS AND DISCUSSION  

This section begins with physiological and then moves to proteomic data.  The 

physiological data from three experiments is presented and discussed (28 mL 

reconnaissance experiment, 1 L experiment with protein data, and 28 mL repeat and 

addition of Zn experiment).  Any low molecular weight thiol data discussed were from a 

fourth experiment in 500 mL cultures performed concurrently with the 28 mL repeat and 

Zn addition experiment.  The complex proteomic dataset is presented in terms of cluster 

analysis, then pairwise-comparison of Cd treatments to the control at each timepoint 

throughout the experiment and ties the protein data back to the physiological observations 

by discussion of functional groups of proteins affected by Cd. 
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Physiological Data 

 The growth of WH5701 under chronic Cd concentrations ranging from no added 

Cd2+ to 44 pM free Cd2+ in duplicate 28 mL tubes as monitored by the relative 

fluorescence of chlorophyll a in vivo measured over approximately 30 days yielded three 

salient observations (Figure 3.1).  First, despite differing Cd concentrations, growth rates 

of all treatments were similar throughout five days of exponential growth (Figures 3.1, 

3.2a).  Growth rates (n = 5) were calculated from the average of duplicate tubes.  Second, 

the addition of Cd resulted in an increase in the maximal chlorophyll a fluorescence that 

was the most pronounced in the highest Cd addition, 44 pM Cd2+ (Figures 3.1, 3.2b).  

And third, the addition of Cd increased the mortality rates of the 4.4 (n = 14) and 44 pM 

Cd2+ (n = 9) relative to the control (n = 16) by a factor of 1.8 and four, respectively 

(Figures 3.1, 3.2c).  Mortality rates once the cultures began to die were 1.3 and 2.5 times 

greater than the control (n = 8) for 4.4 (n = 11) and 44 pM Cd2+ (n = 9) treatments, 

respectively (Figure 3.2d).  In a repeat experiment in 28 mL tubes, extended to include 

the presence of tens of picomolar Zn2+ in the media, growth rates were again similar, 

however the addition of Cd did not result in an increase in chlorophyll a fluorescence or 

increased mortality rates (Figure 3.3). 
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 Similar physiological results were obtained upon repetition of the reconnaissance 

experiment with singlicate 1 L cultures, with cell numbers monitored and samples 

collected for global proteomic analysis at five time points throughout the growth curve 

(Figure 3.4).  Again, growth rates among the three treatments were similar when 

calculated using chlorophyll a and phycoerythrin (data not shown).  According to cell 

number, the cells entered stationary phase around 120 hours.  Cell numbers revealed 

similar growth rates and showed that the loss of chlorophyll a fluorescence during death 

phase was due to a decrease in cell numbers (compare Figure 3.4a, b and c).  The 

chlorophyll a/phycoerythrin fluorescence ratio increases steadily through growth and 

early stationary phase across all treatments.  The Cd treatments continue to increase 

through stationary phase, however, while the control does not.  Instead, the Cd treatments 

diverge from each other and the control (Figure 3.4d). 
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 Since Cd is generally considered a toxic metal, with only one known nutritive use 

in a marine diatom carbonic anhydrase, one might expect the diminishment of growth 

rates upon chronic exposure to Cd.  In these experiments with Synechococcus WH5701, 

this was not the case.  With the physiological monitors of relative chlorophyll a and 

phycoerythrin fluorescence and cell number, no difference among the treatments could be 

detected during exponential growth.  Physiological toxicity in the form of cellular death 

arresting stationary phase in Cd treatments in this experiment implies cellular uptake of 

Cd and makes one wonder about the cellular destination of Cd upon entry to the cell and 

mechanism of toxicity.  Differences can be observed in the global proteomic data from 

exponential growth that could begin to answer this question.  Various hypotheses exist 

for mechanisms of Cd toxicity or detoxification including the replacement of native 

metals with Cd, induction of metallothioneins, induction of phytochelatins, and/or 

binding by smaller ligands such as glutathione.  Experimental evidence for the 

replacement of native metals with Cd is scarce in animal cells (Martelli et al., 2006) and 

could only be hinted at with the global proteomic data obtained in this study.  To show 

the replacement of native metals, detailed biochemical work would be required beyond 

the scope of this study.  The induction of metallothioneins by Cd exposure has been 

observed at many levels of life from cyanobacteria to mammals (Margoshes and Vallee, 

1957; Palmiter, 1998; Duncan et al., 2006) and also recently from the marine 

cyanobacterium WH8102 (Cox and Saito, unpublished data).  Lowering peptide 

tolerances in the analysis of WH5701 yields the presence of this small protein, although 

not enough to quantify relative abundances.  In this case, lack of presence does not imply 

absence. 

 Physiologically (cell number, chlorophyll a fluorescence and phycoerythrin 

fluorescence), there is no observable effect of chronic Cd stress during exponential 

growth.  Chronic Cd stress does affect the cells, however, giving the Cd cultures a much 

faster mortality rate, 1.8 x and 4 x that of the control for 4.4 pM Cd2+ and 44 pM Cd2+ 

treatments, respectively.  Other researchers have found that Cd interferes with 

photosynthesis in an unicellular algae, Chlamydomonas reinhardtii (Gillet et al., 2006).  
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Our data show that Cd is interfering with photosynthesis even though there are no 

observed physiological effects during growth.  There is also the question of 

bioavailability.  The cultures are buffered with EDTA, theoretically providing constant 

picomolar free concentrations of Cd2+.  As the cells grow and produce ligands that bind 

the metals, they could become more (or less) bioavailable.  A recent study has suggested 

that the uptake of copper by field populations of phytoplankton in the subarctic Northeast 

Pacific Ocean from organic copper complexes is important (Semeniuk et al., 2009).  

Uptake rates of copper bound to oxidized glutathione in the 0.2 -2 µM fraction were 

similar to those of natural ligands (Semeniuk et al., 2009).  It is interesting to note that 

measurements of dissolved and particulate thiols in a repeat experiment show a large pool 

of intracellular oxidized glutathione in the 44 pM Cd2+ treatment that is not present in the 

no added Cd treatment and also less cysteine in the media of the 44 pM Cd2+ treatment 

than the no added Cd treatment.  These data are consistent with the concept of organically 

bound Cd uptake, but also consistent with the idea of uptake of inorganic Cd with 

consequent intracellular binding.  We cannot at present distinguish between these two 

processes.  Increasing bioavailability of Cd throughout the progression of the experiment 

would not fully explain the lack of physiological effects observed during growth phase.  

There could be differences in metal sensing among the treatments (Waldron et al., 2009), 

which would be difficult to specifically detect in these data. 

Global Proteomic Data - Cluster analysis 

 Analysis resulted in the identification of 747 proteins from 153,721 mass spectra 

over 45 injections (3 treatments at 5 time points injected in triplicate) with a 1.7% peptide 

false discovery rate using 95% peptide minimum confidence level, 99.9% protein 

minimum confidence level and a minimum of 2 peptides.  This experiment identified 

22.3% of the 3346 possible proteins present in the genome of WH5701.  Graphs are 

constructed from an analysis resulting in the identification of 432 proteins from 141,210 

mass spectra with a 0.3% peptide false discovery rate using 95% peptide minimum 

confidence level, 99.9% protein minimum confidence level and a minimum of 4 peptides.  

Using these more stringent conditions, 12.9% of the 3346 possible proteins present in the 
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genome of WH5701 were identified. 

 Considering all treatments across time, 152 proteins were above a threshold count 

average signal of greater than or equal to 5 spectral counts and a minimum difference of 

10 counts.  Cluster analysis of these 152 proteins (Eisen et al., 1998) reveals changes in 

protein abundance that appear related to growth phase, but also Cd2+ effects (Figure 3.5).  

The proteins cluster into six groups, labeled by the growth phase (exponential-death) in 

which proteins are present and most abundant (Figure 3.5). The order of the treatments on 

the x-axis in Figure 3.5 is T1-T5 from left to right with the treatments in each time point 

ordered from no Cd to 44 pM Cd2+.  Group 1 consists of 21 proteins that are most present 

in exponential growth and early stationary phase (T1 and T2) and not present by mid-

stationary phase, 11 of which are ribosomal proteins (Figure 3.5).  Twenty-three Group 2 

proteins are present in exponential growth, early and mid-stationary phases (T1, T2, T3) 

and not present in late stationary or death phases, many of which are involved in 

metabolism (Figure 3.5).  Forty-two proteins that are present in mid-and late stationary 

phase (T3, T4) but not in very late stationary/death phase are considered Group 3 (Figure 

3.5).  Many are involved in metabolism and regulation, and a few proteases.  A small 

group of 11 proteins comprises Group 4; they are most abundant in early or mid-

stationary to late stationary (Figure 3.5).  Four of them are hypothetical proteins, and 

another is involved in nitrogen metabolism regulation.  Group 5 consists of 25 proteins 

present in mid-stationary to very late stationary/death phase and 14 of them are 

hypothetical (Figure 3.5).  Others are involved in protein folding, iron transport, cell wall 

degradation, oxidative stress and two in photosystem II.  Group 6 can best be described 

as less abundant in high Cd treatment during exponential growth but present during both 

Cd treatments during death phase and consists of 29 proteins.  Many of these proteins are 

involved in photosynthesis, carbon fixation, ATP synthesis and the ABC transport of 

nitrogen and phosphorus.   

Allowing the treatments (x-axis) to cluster in addition to the proteins (y-axis) 

groups the treatments into five clusters (a-e) from left to right (data not shown): a) T1 

control and T1 4.4 pM Cd2+; b) T2 control, T1 44 pM Cd2+, T2 4.4 pM Cd2+, and T2 44 
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pM Cd2+; c) T3 control, T3 4.4 pM Cd2+, and T3 44 pM Cd2+; d) T4 4.4 pM Cd2+, T4 44 

pM Cd2+, and T5 control; and e) T4 control, T5 4.4 pM Cd2+, and T5 44 pM Cd2+.  This 

clustering suggests that exponential growth phase (T1) relative protein abundances 44 

pM Cd2+ are similar to early exponential phase (T2) relative protein abundances in all 

treatments and that late stationary phase (T4) no added Cd2+ relative protein abundances 

are similar to the death phase (T5) Cd2+ relative protein abundances.  The latter 

observation is correlated with an approximate factor of two drop in cell number in the no 

added Cd2+ treatment from T3 to T4.  By comparison, cell numbers in the Cd2+ treatments 

drop about two orders of magnitude from T4 to T5.  Together, these observations suggest 

that the no added Cd2+ treatment underwent a minor episode of cell death from T3 to T4 

that was reflected in the proteome. 
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Global Proteomic Data - Pairwise comparisons by phase of growth 

In addition to cluster analysis, which gave a global view of changes in the entire 

detected proteome under these specific conditions and revealed very clearly changes in 

relative protein abundance with growth phase as well as some Cd effects, pairwise 

analyses of relative protein abundance in one Cd treatment compared to the control at 

each timepoint directly addresses changes caused by the addition of Cd.  Figure 3.6 is a 

summary of this pairwise analysis.  It depicts the number of proteins that are more 

abundant by greater than or equal to two-fold in a Cd treatment compared to the control 

(red) and the control compared to Cd (black).  Overall, the number of proteins that were 

more than two-fold differentially abundant was the greatest during late stationary (T4) 

and very late stationary/death phase (T5) compared to growth through mid-stationary 

phases (T1-T3) (Figure 3.6).  Tables of the actual proteins that changed at each timepoint, 

as well as their respective KEGG functions will be found under their respective 

timepoint. 
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Exponential Growth Phase (T1) 

During exponential growth phase, 54 proteins were above a threshold count signal 

of greater than or equal to 5 spectral counts and were more abundant by > two-fold in at 

least one of the Cd treatments compared to the control (Figure 3.7, Table 3.1).  Twenty-

seven proteins by the same stringencies were more abundant in the control compared to at 

least one of the Cd treatments (Table 3.2). 4.4 and 44 pM Cd2+ treatments have an 

overabundance of many ribosomal proteins, arylsulfatases, an isocitrate dehydrogenase, 

proteins involved in chlorophyll biosynthesis, and cysteine metabolism, among others 

compared to the control (Table 3.1). The hypothetical protein WH5701_01855, 16 times 

more abundant in the high Cd treatment compared to the control, showed nucleotide 

BLAST alignment with a query of length 1521 to a putative uroporphyrinogen 

decarboxylase with a score of 316 bits, 70% identity of 763 and E-value of 2e-44 (Altschul 

et al., 1997), another protein involved in chlorophyll biosynthesis.  The Cd treatments 

have an underabundance of photosystem I, carboxysome and hypothetical proteins 

relative to the control (Table 3.2).  Eight times less abundant in the high Cd treatment 

than the control is a WH5701_09565 hypothetical protein that showed nucleotide BLAST 

alignment with a query of length 594 to an uncharacterized conserved secreted protein in 

Synechococcus WH7803 with a score of 131 bits, 71% identity of 304 and E-value of 7e-

27 (Altschul et al., 1997). 
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Early Stationary Phase (T2) 

During early stationary phase, 11 proteins were above a threshold count signal of 

greater than or equal to 5 spectral counts and were more abundant by > two-fold in at 

least one of the Cd treatments compared to the control (Table II.1).  Thirty-six proteins 

by the same stringencies were more abundant in the control compared to at least one of 

the Cd treatments (Table II.2).  4.4 and 44 pM Cd2+ treatments have an overabundance of 

4 hypothetical proteins, and an extra cellular solute-binding protein family 3, among 

others, compared to the control (Table II.1).  The Cd treatments have an underabundance 

of photosystem I, ATP synthase, arylsulfatase and six ribosomal proteins relative to the 

control (Table II.2).   

Mid-Stationary Phase (T3) 

During mid-stationary phase, 24 proteins were above a threshold count signal of 

greater than or equal to 5 spectral counts and were more abundant by > two-fold in at 

least one of the Cd treatments compared to the control (Table II.3).  Fourteen proteins by 

the same stringencies were more abundant in the control compared to at least one of the 

Cd treatments (Table II.4).  4.4 and 44 pM Cd2+ treatments have an overabundance of 

two proteins involved in chlorophyll biosynthesis, coproporphyrinogen III oxidase and 

uroporphyrinogen decarboxylase, a stationary phase survival protein (SurE), the 

extracellular solute-binding protein family 3, and the putative arylsulfatase among others, 

compared to the control (Table II.3).  The Cd treatments have an underabundance of a 

few purine biosynthesis proteins and two phycobilisome proteins, among others relative 

to the control (Table II.4).  

Late Stationary Phase (T4) 

During late stationary phase, 76 proteins were above a threshold count signal of 

greater than or equal to 5 spectral counts and were more abundant by > two-fold in at 

least one of the Cd treatments compared to the control (Table II.5).  Seventy-nine 

proteins by the same stringencies were more abundant in the control compared to at least 

one of the Cd treatments (Table II.6).  4.4 and 44 pM Cd2+ treatments have an 

overabundance of three proteins involved in chlorophyll biosynthesis, two proteins 
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involved in cysteine and sulfur metabolism, 16 hypothetical proteins, and phycobilisome-

associated pigments, among others, compared to the control (Table II.5).  The Cd 

treatments have an underabundance of ATP synthase, three carboxysome-related 

proteins, and 25 hypothetical proteins, among others relative to the control (Table II.6). 

Very Late Stationary or Death Phase (T5) 

During very late stationary phase for the control and death phase for the Cd 

treatments, 79 proteins were above a threshold count signal of greater than or equal to 

five spectral counts and were more abundant by > two-fold in at least one of the Cd 

treatments compared to the control (Table 3.3).  Seventy-eight proteins by the same 

stringencies were more abundant in the control compared to the Cd treatments (Table 

3.4).  4.4 and 44 pM Cd2+ treatments have an overabundance of 36 hypothetical proteins, 

photosystem I proteins, carboxysome proteins, and ATP synthase, among others, 

compared to the control (Table 3.3).  The Cd treatments have an underabundance of 12 

hypothetical proteins, phycobilisome-related pigments, a protein involved in chlorophyll 

biosynthesis, among others relative to the control (Table 3.4).   
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Global Proteomic Data - Pairwise by function and physiological effects 

When grouped by function, the proteomic response at different growth stages 

showed noticeable trends.  This next section of the results and discussion groups proteins 

by function.  All proteins discussed were differentially abundant between a Cd treatment 

and the control by > two-fold.  This section begins with the biosynthesis of chlorophyll, 

follows the energy path through photosynthesis and carbon fixation and then other 

metabolic processes.  These functions are placed in the greater context of the three 

physiological observations: 1) similar growth rates among treatments despite Cd2+ 

addition (Figures 3.1 and 3.2a), 2) increased maximal chlorophyll a fluorescence with 

Cd2+ addition (Figures 3.1 and 3.2b), and 3) increased mortality rates with Cd2+ addition 
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(Figures 3.1 and 3.2c). 

Chlorophyll biosynthesis 

Five proteins involved in the biosynthesis of chlorophyll, a 17 step enzymatic 

process, were > two-fold differentially abundant between the control and at least one of 

the Cd treatments during at least one of the growth phases (Figure 3.8).  These five 

proteins are glutamate-1-semialdehyde transferase (Step 3), δ-aminolevulinic acid 

dehydratase, also known as porphobilinogen synthase (Step 4), uroporphyrinogen 

decarboxylase (Step 7), coproporphyrinogen III oxidase (Step 8), and protochlorophyllide 

oxidoreductase (Step 16) (Figure 3.8).   

Glutamate-1-semialdehyde transferase, which catalyzes the reaction of L-glutamic 

acid 1-semialdehyde to δ-aminolevulinic acid in the presence of pyridoxal phosphate, 

was more abundant in the 44 pM Cd2+ treatment relative to the control during exponential 

growth (T1) and late stationary (T4) (Figure 3.8, Tables 3.1, II.5) and more abundant in 

the 4.4 pM Cd2+ treatment relative to the control during late stationary (T4) (Figure 3.8, 

Table II.5). Glutamate-1-semialdehyde transferase was more abundant in the control than 

both of the Cd treatments during very late stationary and death phase (Figure 3.8, Table 

3.4). 

δ-aminolevulinic acid dehydratase, also known as porphobilinogen synthase,  a 

Zn-requiring enzyme which catalyzes the reaction of δ-aminolevulinic acid to 

porphobilinogen, was more abundant in the 44 pM Cd2+ treatment relative to the control 

during exponential growth (T1) (Figure 3.8, Tables 3.1) and more abundant in the control 

than both of the Cd treatments during late stationary (Figure 3.8, Table II.6). 

Uroporphyrinogen decarboxylase, which catalyzes the reaction of 

uroporphyrinogen III to coproporphyrinogen III, was more abundant in the 44 pM Cd2+ 

treatment relative to the control during late stationary (T4) (Figure 3.8, Table II.5) and 

more abundant in the 4.4 pM Cd2+ treatment relative to the control during mid- and late 

stationary (T3 and T4) (Figure 3.8, Tables II.3, II.5). Uroporphyrinogen decarboxylase 

was more abundant in the control than both of the Cd treatments during early stationary 

(T2) (Figure 3.8, Table II.2). 
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Coproporphyrinogen III oxidase, which catalyzes the reaction of 

coproporphyrinogen III to protoporphyrinogen IX, was more abundant in both the 4.4 and 

44 pM Cd2+ treatment relative to the control during mid- and late stationary (T3 and T4) 

(Figure 3.8, Tables II.3, II.5).  Uroporphyrinogen decarboxylase was more abundant in 

the control than both of the Cd treatments during early stationary (T2) (Figure 3.8, Table 

II.1). 

Protochlorophyllide oxidoreductase, which catalyzes the reaction of 

protochlorophyllide to chlorophyllide a, was more abundant in both the 4.4 and 44 pM 

Cd2+ treatment relative to the control late stationary (T4) (Figure 3.8, Table II.5). 

Protochlorophyllide oxidoreductase was more abundant in the control than both of the Cd 

treatments during early stationary (T2) (Figure 3.8, Table II.2).   

The dramatic physiological effects with chronic Cd exposure observed in this 

experiment (increased chlorophyll a maximum and faster death rate in the Cd treatments) 

are not observed when Zn is added to the media (Figure 3.3).  This may imply that the 

presence of Zn is integral to the photosynthetic functionality, perhaps by Cd disrupting a 

Zn regulatory system causing an induction of the chlorophyll biosynthesis pathway 

resulting in overproduction of chlorophyll.  If this is true, we still do not know the exact 

mechanism or the site of this influence.  The lack of dramatic physiological effects with 

Cd in the media when Zn is also present implies that the ratio of Cd/Zn matters for 

toxicity of Cd to cyanobacteria in culture and consequently could play a role in the 

environment. 

 The origin of a physiological maximum in chlorophyll a fluorescence at T4 

(Figure 3.4a), late stationary phase, for the 44 pM Cd2+ treatment, because of an 

increased quantity of chlorophyll a is supported by a greater than two-fold increase in 

relative abundance of glutamate-1-semialdehyde transferase, uroporphyrinogen 

decarboxylase and coporphyrinogen III oxidase, three enzymes in the chlorophyll a 

biosynthesis pathway at T3 and T4 (Figures 3.4, 3.8, Tables II.3, II.5).  The 4.4 pM Cd2+ 

treatment also reached a similar maximum fluorescence in-between protein sampling 

points T4 and T5 and has the same more than two-fold relative increase in these three 
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enzymes.  This hypothesis is not supported in that the chlorophyll a fluorescence per cell 

with time (a proxy for chlorophyll a per cell) does not show much difference between the 

control and Cd treatments (plot not shown). 

Two similar alternative hypotheses hinge on the fact that a change in chlorophyll 

a fluorescence directly reflects photosystem II, as expected in most photosynthetic 

organisms (Campbell et al., 1998).  However, due to the ability of cyanobacteria to adapt 

chromically (Everroad et al., 2006), the slight contribution of phycobiliproteins to the 

chlorophyll emission spectrum (Campbell et al., 1998), and the possible slight 

contribution of photosystem I chlorophyll (Campbell et al. 1998 and reference therein), 

one cannot always assume this direct correlation of chlorophyll a fluorescence with 

photosystem II.  Although chromic adaptation of many strains of marine Synechococcus 

has been investigated by Palenik (2001), whether or not WH5701 is capable of chromic 

adaptation is as of yet unknown.  The first hypothesis is that Cd directly binds to 

photosystem II centers causing an increase in chlorophyll a fluorescence.  Addition of 3-

(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to cyanobacteria causes the closing of 

photosystem II centers, resulting in a rapid rise in fluorescence (Campbell et al., 1998).  

This hypothesis cannot be tested by this global proteomic dataset.  The second hypothesis 

is that Cd disrupts or reduces electron transport, based on the pot model of Beutler 2003 

and related evidence of Zn2+ and Cd2+ binding to the bacterial reaction center in 

Rhodobacter sphaeroides thereby reducing rates of electron transfer from photosystem II 

to QB (Okamura et al., 2000 and reference therein).  In the pot model, excitons with a 

particular intensity produced by absorbed light energy strike photosystem II.  There are 

three subsequent means of deexcitation: photochemical quenching, fluorescence, and 

thermal deexcitation. If an increase in fluorescence is observed, assuming a constant 

input and no change in photosystem II, then photochemical quenching leading to the 

electron transport train or thermal deexcitation must be reduced.  This could be tested by 

global proteomics by comparing the relative abundances if the cytochrome b6f complex 

or enzymes involved in the synthesis of quinone were detected, but these enzymes were 

not observed. 
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Alternatively, the in vivo substitution of the Mg2+ binding in chlorophyll by heavy 

metals (mercury, copper, cadmium, nickel, zinc, and lead), leading to the breakdown of 

photosynthesis in plants, has been shown to be an important damage mechanism (Küpper 

et al., 1998).  The substitution of Cd or Zn for magnesium in chlorophyll destabilizes the 

first excitation state, as deduced by lowered in vitro fluorescence quantum yield of heavy 

metal substituted chlorophylls compared to magnesium chlorophyll (Küpper et al., 1998).  

There has been one known photosynthetically active Zn-bacteriochlorophyll in 

Acidiphilium rubrum (Wakao et al., 1996).  The substitution of the magnesium in 

chlorophyll with Cd is probably not what is happening in this experiment because we 

would expect the chlorophyll a fluorescence to decrease, due to the instability of Cd 

chlorophyll (Küpper et al., 1996), not increase as we observed.  Or because the heavy 

metal substitution rate in plants is only about 2% for the total chlorophyll, albeit this 

substitution rate still produces a massive breakdown in photosynthesis (Küpper et al., 

1998), substitution could be happening in this experiment and it would undetected. 

Cd caused some changes in chlorophyll a biosynthesis proteins in this experiment, 

but we have not shown this to be directly linked to an increase in chlorophyll a itself.  

The chlorophyll a maximum is probably related to Cd interfering with Zn because we do 

not see the chlorophyll a maximum when Zn is added to the media (Figure 3.3).  Cd 

could be interfering with Zn regulation.  Zn could be involved in photosynthetic 

regulation and Cd is interfering.  Oxidative stress is known to modulate apoptosis.  

Apoptosis is the process of programmed cell death in animal systems and apoptotic 

processes have begun to be considered in phytoplankton (Vardi et al., 2007).  If Zn is 

modulating oxidative stress and the cells are Zn deficient, Cd can be affecting oxidative 

stress, which may cause cell death.  There is also a dosage of Cd and time effect.  Cells 

exposed to an order of magnitude more Cd, 44 pM Cd2+ show the effects first and cell 

numbers dramatically decrease and then the cells exposed to 4.4 pM Cd2+ show similar 

effects later in the experiment and then cell numbers decrease dramatically (Figure 

3.4a,b). 
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Phycobilisome 

Phycobilisomes gather excitation energy from incoming photons.  The proteins 

that comprise phycobilisomes comprise a large percentage of the total protein mass in a 

cyanobacterial cell, and indeed we see phycocyanin and allophycocyanin as the most 

abundant proteins in our global proteomic data. In phycobilisomes, phycobiliproteins 

bind phycobilins (chromophores) by covalent thioether bonds to cysteinyl residues 

(MacColl, 1998; Everroad et al., 2006).  Phycobilisomes are thought to be able to transfer 

excitation energy to both photosystem II and I (Mullineaux, 1999).  Four phycobilisome-

associated proteins: the α subunit of phycocyanin, β subunit of allophycocyanin, anchor 

polypeptide LCM and phycobilisome linker polypeptide were more than two-fold 

differentially abundant between the control and at least one of the Cd treatments at one of 

the time points (Figure 3.9).  

The α subunit of phycocyanin, the outer rod in the phycobilisome, was overall the 

most abundant protein identified in this experiment.  The β subunit of allophycocyanin, a 

core component in the phycobilisome, was the third most abundant protein identified.  

During late stationary phase (T4), these two pigments were more abundant in the two Cd 

treatments than the control (Figure 3.9, Table II.5).  During very late stationary/death 

phase, phycocyanin and allophycocyanin were more abundant in the control than the two 

Cd treatments (Figure 3.9, Table 3.4). 

The anchor polypeptide LCM, another core component of the phycobilisome, was 

more abundant in both of the Cd treatments during exponential growth (T1) and more 

abundant in the control than the two Cd treatments during very late stationary/death 

phase (T5) (Figure 3.9, Tables 3.1, 3.4). 

The phycobilisome linker polypeptide, peptides that link together the discs of 

pigments, is more abundant in the control than the 44 pM Cd2+ treatment during early and 

mid-stationary and very late stationary/death (T2, T3, T5) (Figure 3.9, Tables II.3, II.4, 

3.4).  The linker polypeptide is more abundant in the control than the 4.4 pM Cd2+ during 

very late stationary/death (T5) (Figure 3.9, Table 3.4). 
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Chronic Cd exposure in both the 4.4 pM Cd2+ and 44 pM Cd2+ treatments caused 

a three-fold increase in the rate of the degradation of pigments in the phycobilisome 

relative to the control as calculated by the decrease in spectral counts of phycocyanin β 

subunit (calculated from Figure 3.9).  The mechanism causing the faster degradation of 

pigments in the Cd treatments is unknown.  One possibility is the direct binding of Cd to 

the covalent thioether bonds to cysteinyl residues that link phycobiliproteins to 

phycobilins (Everroad et al., 2006) causing degradation of the protein, another possibility 

assumes phycobiliproteins are continually made, but allocation of sulfur to other 

processes in the cell, such as production of low molecular weight thiols or 

metallothioneins, would make sulfur unavailable for use in synthesis of 

phycobiliproteins.  This suggestion of lack of accessible sulfur combined with the 

observed increase in relative abundance of arylsulfatases, enzymes that scavenge sulfur 

from organo-sulfur compounds in times of low sulfate abundance, could be taken to 

imply that the cells are experiencing sulfur starvation.  In this instance, however, sulfur 

starvation would have to be a result of phosphate limitation, because there is mM sulfate 

in the media.  Sulfate uptake transport systems tend to require ATP (Silver and 

Walderhaug, 1992).  In addition, the loss of pigmentation, as evidenced by the lower 

abundance of phycocyanin and allophycocyanin in Cd treatments compared to the control 

during very late stationary/death phase, (T5) agrees well with the lower cell counts 

attributable to cell death in the cultures. 
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Photosystem II 

Phycobilisomes are thought to transfer excitation energy to photosystem II (PSII), 

but also photosystem I (Mullineaux, 1999). Three PSII proteins: PSII protein (PsbC), 

PSII Mn-stabilizing polypeptide, PSII chlorophyll binding protein, and a protein 

annotated as “chloroplast membrane associated protein 30kD protein-like” were more 

than two-fold differentially abundant between the control and at least one of the Cd 

treatments at one of the timepoints (Figure 3.10).  

PSII protein (PsbC) and the PSII chlorophyll binding protein were more abundant 

in the control and 4.4 pM Cd2+ than the 44 pM Cd2+ during exponential growth (T1) 

(Figure 3.10, Table 3.2) and more abundant in the control than the Cd treatments during 

early stationary (T2) (Figure 3.10, Table 3.2).  The PSII Mn-stabilizing polypeptide, 

involved in PSII water oxidation, was more abundant in the control and 4.4 pM Cd2+ than 

the 44 pM Cd2+ during T1 (Figure 3.10, Table 3.2).  The protein annotated as 

“chloroplast membrane associated 30kD protein-like” was more abundant in the control 

than the 44 pM Cd2+ treatment during T1 (Figure 3.10, Table 3.2) and more abundant in 

the control than both Cd treatments during late stationary (T4) (Figure 3.10, Table II.6).  

During very late stationary/death (T5), however, it is more abundant in the 44 pM Cd2+ 

treatment than both the control and the 4.4 pM Cd2+ treatment (Figure 3.10, Table 3.3). 

Besides the aforementioned PSII Mn-stabilizing protein, chlorophyll-binding 

protein and PsbC, which were lower in abundance in the Cd treatments compared to the 

control during growth, three other components of PSII were detected whose relative 

abundances either were too low or did not change dramatically between the control and 

Cd treatments. The fact that the PSII proteins with greater than 5 spectral counts have 

similar relative abundances in the Cd treatments compared to the control throughout the 

experiment implies that a portion of the core part of PSII does not appear to be affected 

by Cd.  This is consistent with the reduced electron transport causing the increase in 

chlorophyll fluorescence.  Studies have shown the direct binding of Cd2+ to core proteins 

of PSII thereby reducing electron transport (Okamura et al., 2000).  PSII is comprised of 

D1 and D2 reaction center core proteins, CP43 (a chlorophyll a binding core antenna 
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protein associated with the reaction center), an oxygen-evolving complex and 

cytochrome b559.  Under acclimation to low growth light, functional PSII content is 

approximately equal to the D1 protein content (Six et al., 2007) from (Burns et al., 2006).  

D1 was not observed, but core protein D2 was detected with at most three spectral 

counts, the fact that it is detected means this protein could be quantified using labeled 

peptides using a triple quadrupole mass spectrometer, which can target a specific mass 

range.  The other two proteins had similar relative abundances among Cd treatments 

compared to the control: PSII complex extrinsic protein precursor (PsuB) and a putative 

PSII reaction center Psb28 with counts up to 42 and 19 respectively. 

The PSII Mn-stabilizing polypeptide, involved in PSII water oxidation, was more 

abundant in the control and 4.4 pM Cd2+ than the 44 pM Cd2+ during T1 (Figure 3.10, 

Table 3.2).  Because this protein is less abundant in the 44 pM Cd2+ treatment, Cd could 

be interfering with the stabilization of Mn.  Perhaps the evolution of oxygen is similar or 

decreased in the 44 pM Cd2+ treatment compared to the control and 4.4 pM Cd2+ 

treatments, which could help to explain why an increase in oxidative stress related 

proteins with chronic Cd was not observed, as previously noted in Chlamydomonas 

reinhardtii (Gillett et al., 2006), until stationary phase if at all. 

Similar to some carboxysome-associated proteins, like the possible carbon 

concentrating mechanism, the carboxysome shell peptide, and the carboxysome shell 

protein, the protein annotated as “chloroplast membrane associated 30kD protein-like” is 

more abundant in the control than the 44 pM Cd2+ treatment during T1 (Figure 3.13, 

Table 3.2) and more abundant in the 44 pM Cd2+ treatment than both the control and the 

4.4 pM Cd2+ treatment during T5 (Figure 3.13, Table 3.3).  This could imply some sort 

attempt at carbon fixation in the 44 pM Cd2+ treatment while the cells are lysing or 

perhaps the production of these proteins is upregulated by the combination of Cd 

exposure and cell death.  In addition, many PSII proteins can be removed and yet render 

PSII still functional (Blankenship, 2002).  Knowing this, the lack of PsbC and the PSII 

chlorophyll binding protein in the 44 pM Cd2+ treatment does not mean that PSII is 

nonoperational, perhaps merely less effective. 
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Photosystem I 

Electrons are transferred from PSII to photosystem I (PSI).  The cyclic flow of 

electrons through PSI generates a H+ gradient across the thylakoid membrane, which is 

used to generate ATP using ATP synthase.  Some of the most dramatic differences in 

relative protein abundance between the treatments are observed in PSI proteins.  Five PSI 

proteins: core protein (PsaB), subunit III (PsaF), reaction center subunit II (PsaD), 

reaction center subunit IV (PsaE), and reaction center subunit VII (PsaC), were more than 

two-fold differentially abundant between the control and at least one of the Cd treatments 

at one of the timepoints (Figure 3.11).  

PSI proteins, core protein PsaB and subunit III (PsaF) are more abundant in the 

control and 4.4 pM Cd2+ than the 44 pM Cd2+ treatment during exponential growth (T1) 

(Figure 3.11, Table 3.2).  They are more abundant in the control than both Cd treatments 

during early stationary (T2) (Figure 3.11, Table II.2).  They are similarly not abundant 

among all treatments throughout the remainder of stationary phase T3, T4, and T5 

(Figure 3.11). 

PSI reaction centers subunits II (PsaD) and IV (PsaE) are more abundant in the 

control and 4.4 pM Cd2+ than the 44 pM Cd2+ treatment during exponential growth (T1) 

(Figure 3.11, Table 3.2).  They are more abundant in the control than both Cd treatments 

during late stationary (T4) (Figure 3.11, Table II.6). During very late stationary/death 

(T5), however, they are more abundant in the 44 pM Cd2+ treatment than both the control 

and the 4.4 pM Cd2+ treatment (Figure 3.11, Table 3.3). 

PSI reaction center subunit VII (PsaC) is more abundant in the control and 4.4 pM 

Cd2+ than the 44 pM Cd2+ treatment during exponential growth (T1) (Figure 3.11, Table 

3.2).  It is more abundant in the control than both Cd treatments during early and late 

stationary (T2 and T4) (Figure 3.11, Tables II.2, II.6). During very late stationary/death 

(T5), however, it is more abundant in the 44 pM Cd2+ treatment than both the control and 

the 4.4 pM Cd2+ treatment (Figure 3.11, Table 3.3). 

The lower relative abundance of five PSI proteins during exponential growth 

phase in the 44 pM Cd2+ treatment than both the control and the 4.4 pM Cd2+ treatment 
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(Figure 3.11, Table 3.2) suggests that there is a threshold between 4.4 and 44 pM Cd2+ 

that affects the presence of PSI proteins.  More Cd may be taken up faster because it is 

more abundant.  For example, at T1, there is less of PsaB and PsaF in 44 pM Cd2+ 

treatment, whereas at T2 there is more of PsaB and PsaF in the control than both of the 

Cd treatments.  This suggests that the threshold was reached in the 4.4 pM Cd2+ treatment 

by T2. 
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The pattern of distribution of PSI proteins in the 44 pM Cd2+ treatment suggests 

that overall, PSI is less abundant per cell during growth and stationary phase and more 

abundant during death phase, similar to some of the carboxysome-associated proteins.  

Perhaps the presence of Cd in the quantities supplied in the 44 pM Cd2+ treatment blocks, 

inhibits or reduces the abundance of PSI proteins, leading to the eventual demise of the 

cell.  Perhaps the death of the cells in the Cd treatments or the presence of Cd itself 

triggers the upregulation of photosynthesis and carbon fixation proteins.  The 

stoichiometry of PSI to PSII in cyanobacteria is usually higher than 1:1, but can vary 

(Campbell et al., 1998).  This idea of the reduction of cellular levels of PSI in response to 

metal stress is not unique; two strains of freshwater cyanobacteria grown under iron-

depleted conditions reduce the cellular levels of PSI and target the phycobilisome for 

rapid degradation (Ting et al., 2002 and references therein).  Both of these effects are 

observed in this iron-replete Cd-addition experiment.  One could argue that an 

overabundance of Cd apparently displays some characteristics of a cellular iron depletion.  

In addition, alternative electron sinks and transport upstream of PSI involving O2 as a 

major acceptor in Synechococcus WH8102 (Bailey et al., 2008) shows that an open ocean 

marine cyanobacterium could adjust to a changing PSI to PSII ratio, so adjustments in 

cellular PSI/PSII ratios hinted at by these changes in relative protein abundance is 

consistent with observations of previous researchers.   

Cadmium appears to either be interfering with the regulatory network that 

controls the production of lumen-associated proteins, or be interfering directly with PSI 

proteins inside the lumen.  If the former were the case, the regulator has not yet been 

found.  If the latter were true, the question of the Cd2+ transfer mechanism across the 

lumen membrane arises.   

A rise in relative protein abundances of stromal side PSI proteins with a decrease 

in pigmentation could be related to regulation.  PsaD, PsaC and PsaE proteins after T3 

are inversely correlated with the relative abundance of pigments, phycocyanin and 

allophycocyanin, whereas PsaB and PsaF appear not to be perhaps due to lower 

abundance (Figure 3.11).  The control shows a drop in pigmentation at T4 and the Cd 
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treatments show a drop in pigmentation at T5, with corresponding rises in relative protein 

abundances of PsaD, PsaC and PsaE.  

Three of the PSI proteins (PsaD, PsaC and PsaE) have a similar pattern of relative 

abundance and are located outside the thylakoid membrane.  Proteins located in the 

thylakoid membrane, PsaB and PsaF, have a similar pattern of relative abundance and are 

located on the lumen side of the thylakoid membrane (Figure 3.11). The Mn-containing 

oxygen evolving complex of PSII is also located on the lumen side (Figure 3.10), so 

either the whole complex containing the manganese is assembled in the lumen, or the 

protein and the Mn are transported to the lumen separately and assembled.  The transport 

of Cd2+ with Mn2+ systems across the outer membrane of eukaryotic diatoms has been 

observed (Sunda and Huntsman, 2000), related evidence for possible interactions of Cd2+ 

and Mn2+.  Related evidence for the direct interference of Cd on photosynthetic apparatus 

comes from a study with spinach.  Cd and other heavy metals can directly replace for 

metals in the photosynthetic apparatus, thereby affecting photosynthesis (Sujak et al., 

2005).  The number of copper plastocyanins can decrease, which causes a decrease in 

turnover of the cytochrome b6f electron complex, affecting the electron transfer path to 

PSI (Sujak et al., 2005).   

Ferredoxin and ATP synthase 

Electrons are transferred from photosystem I to ferredoxin and used by ATP 

synthase to make adenine triphosphate (ATP). Three ferredoxins: ferredoxin-NADP 

reductase, a possible ferredoxin (2Fe-2S), and ferredoxin-thioredoxin reductase catalytic 

chain and three subunits of ATP synthase were more than two-fold differentially 

abundant between the control and at least one of the Cd treatments at at least one of the 

timepoints (Figure 3.12).  

Ferredoxin-NADP reductase was more abundant in the control than both of the 

Cd treatments during early stationary (T2) (Figure 3.12, Table II.2).  It was more 

abundant in the control than the 44 pM Cd2+ treatment during very late stationary/death 

(T5) (Figure 3.12, Table 3.4).  Ferredoxin NADP reductase was more abundant in both 

the Cd treatments than the control during late stationary (T4) (Table II.5).   
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A possible ferredoxin (2Fe-2S) was more abundant in the control and the 4.4 pM 

Cd2+ treatment than the 44 pM Cd2+ treatment during exponential growth (T1) (Figure 

3.12, Table 3.2).  It was more abundant in the control than both the Cd treatments during 

late stationary (T4) (Figure 3.12, Table II.6).  It was more abundant in the 44 pM Cd2+ 

than either the control or 4.4 pM Cd2+ during very late stationary/death (T5) (Figure 3.12, 

Table 3.4). The relative protein abundance distribution this possible ferredoxin (2Fe-2S) 

is very similar to that of carboxysome-associated proteins, suggesting similar regulation 

(Figure 3.13). 

A ferredoxin-thioredoxin reductase catalytic chain protein was more abundant in 

the control and the 4.4 pM Cd2+ treatment than the 44 pM Cd2+ treatment during early 

stationary (T2) (Figure 3.12, Table II.2).  It was more abundant in the control than both of 

the Cd treatments during late stationary (T4) (Figure 3.12, Table II.6).  This pattern 

suggests that the catalytic chain was inhibited by 44 pM Cd2+ during growth phase and 

the inhibition by 4.4 pM Cd2+ came later, perhaps after enough Cd built up inside the 

cells. 

ATP synthase subunit A was more abundant in the 4.4 pM Cd2+ treatment than 

the 44 pM Cd2+ treatment during exponential growth (T1) (Figure 3.12).  It was more 

abundant in the control than both of the Cd treatments during early and late stationary 

(T2 and T4) (Figure 3.12, Tables II.2, II.6).  It was more abundant in both Cd treatments 

than the control during very late stationary/death (T5) (Figure 3.12, Table 3.3). 

ATP synthase subunit B was more abundant in the control and the 4.4 pM Cd2+ 

treatment than the 44 pM Cd2+ treatment during exponential growth (T1) (Figure 3.12, 

Table 3.2).  It was more abundant in the control than both of the Cd treatments during 

early and late stationary (T2 and T4) (Figure 3.12, Tables II.2, II.6).  It was more 

abundant in the 44 pM Cd2+ treatment than the control during very late stationary/death 

(T5) (Figure 3.12, Table 3.3). 

ATP synthase subunit C was more abundant in the control and the 4.4 pM Cd2+ 

treatment than the 44 pM Cd2+ treatment during exponential growth (T1) (Figure 3.12, 

Table 3.2).  It was more abundant in the control than both of the Cd treatments during 
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early and late stationary (T2 and T4) (Figure 3.12, Tables II.2, II.6).  ATP synthase is a 

protein complex comprised of multiple subunits responsible for the synthesis of ATP.  In 

the control, ATP synthase is relatively constant to slightly decreasing T1-T3, highly 

abundant in T4 and not very abundant in T5.  Overall, it appears that ATP synthase is less 

abundant in the 44 pM Cd2+ treatments, suggesting inhibition by Cd.  As with the 

ferredoxin-thioredoxin reductase catalytic chain, inhibition in the 4.4 pM Cd2+ treatment 

occurred later in the experiment as inhibition in the 44 pM Cd2+, suggesting inhibition 

after Cd buildup in the cells. 
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During stationary phase from T3 to T4 in a Zn-deprived culture with no Cd2+ 

added, there was a temporary decrease of phycocyanin (Figure 3.9, Table II.5) and PSII 

protein (Figure 3.10) abundances with a concurrent increase in PSI protein abundances 

(Figure 3.11), carboxysome-associated proteins (Figure 3.13), and ATP synthase (Figure 

3.12) suggesting that the PSI/PSII ratio increased with a concurrent increase in the 

production of ATP and carboxysome-associated carbon fixation.  There was an 

unexpected decrease in the phycocyanin relative abundance in the control treatment 

during late stationary phase (T4) (Figure 3.9).  Phycocyanin spectral counts drop from 

~600 at T3 to ~200 at T4 and spike back up to ~600 at T5.  This sample was colored 

yellow when extracted as opposed to the usual blue from phycocyanin, consistent with 

the lowered phycocyanin relative abundances.  It is tempting to dismiss this control 

sample as an outlier, but three lines of evidence support the idea that it is not an outlier, 

but rather associated with a minor cell death incident: 1) There is an factor of 1.9 

decrease in cell number from T3 to T4 suggesting cell death, 2) cluster analysis of the 

global protein data group the T4 no added Cd treatment with T5 Cd treatments, which 

were experiencing cell death, and 3) many of the relative abundance distributions of other 

proteins make sense in their overall distributions i.e. they do not have unexpected spectral 

counts at T4.  Proteins with spectral count distributions consistent with the rest of the 

timepoints are: possible ferredoxin (Figure 3.12); ferredoxin-thioredoxin reductase 

catalytic chain (Figure 3.12); ribulose 1,5 bisphosphate carboxylase (Figure 3.13); S-

adenosylmethionine synthetase (Figure 3.16); rehydrin (Figure 3.17) and superoxide 

dismutase (Figure 3.17), among others.  Proteins with abundances that decrease 

dramatically with phycocyanin in the no added Cd at T4 are: allophycocyanin (Figure 

3.9); ferredoxin-NADP reductase (Figure 3.12); malate oxidoreductase (Figure 3.14); 

aspartate aminotransferase (Figure 3.14); glyceraldehydes-3-phosphate dehydrogenase 

(Figure 3.14); transketolase (Figure 3.14); phosphoglycerate kinase (Figure 3.14); 

arylsulfatase (Figure 3.15) and cysteine synthase A (Figure 3.16), among others.  Proteins 

with abundances that increased dramatically opposite the drop in phycocyanin in the 

control at T4 are: PSII Mn-stabilizing polypeptide (Figure 3.10), PSI reaction center 
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subunit II (PsaD) (Figure 3.11), PSI reaction center subunit IV (PsaE) (Figure 3.11), PSI 

reaction center subunit VII (PsaC) (Figure 3.11), three subunits of ATP synthase (Figure 

3.12), carboxysome shell protein and peptide (Figure 3.13), possible CcmK (Figure 3.13), 

ribulose 5-phosphate isomerase (Figure 3.14), among others.  This suggests a change in 

regulation of these groups of proteins, perhaps triggered by cell death. 

During the transition from stationary phase to death phase (T3-T5) in a Zn-

deprived culture with 44 pM Cd2+ added, similar to the control, there was a decrease of 

phycocyanin (Figure 3.9) and PSII proteins (Figure 3.10) with a concurrent increase in 

PSI (Figure 3.11) and carboxysome-associated proteins (Figure 3.13).  Unlike the control, 

the abundance of ATP synthase remained low throughout the time course for this 

treatment (Figure 3.12).  Many, but not all of the same proteins change in similar ways to 

the control from T3 to T4. The protein abundances that drop dramatically with the 

phycocyanin in Cd and the control are: allophycocyanin (Figure 3.9), ferredoxin-NADP 

reductase (Figure 3.12), malate oxidoreductase (Figure 3.14), aspartate aminotransferase 

(Figure 3.14), transketolase (Figure 3.14), arylsulfatase (Figure 3.15), and cysteine 

synthase A (Figure 3.16).  The protein abundances that drop dramatically with the 

phycocyanin in 44 pM Cd2+ and not in the control are: ribulose phosphate 3-epimerase 

(Figure 3.14), ribulose 1,5 bisphosphate carboxylase (Figure 3.13), triose phosphate 

isomerase (Figure 3.14), putative arylsulfatase (Figure 3.15), S-adenosylmethionine 

synthetase (Figure 3.16), 5’ methylthioadenosine phosphorylase, and superoxide 

dismutase (Figure 3.17) among others. This suggests a similar downregulation of these 

proteins with cell death, but additional downregulation with Cd.   

The protein abundances that increase dramatically opposite the drop in 

pigmentation are also found to have the same pattern in the control: photosystem II Mn-

stabilizing polypeptide (Figure 3.10), chloroplast membrane-associated 30kD protein-like 

(Figure 3.10), PSI reaction center subunit II (Figure 3.11), PSI reaction center subunit IV 

(psaE) (Figure 3.11), PSI reaction center subunit VII (PsaC) (Figure 3.11), carboxysome 

shell protein (Figure 3.13), carboxysome shell peptide (Figure 3.13), possible CcmK 

(Figure 3.13), among others. This supports the idea of a similar upregulation in these 
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proteins with cell death.  In summary, during stationary phase in a Zn-deprived culture 

with 44 pM Cd2+ added, there is a decrease of PSII pigmentation with a concurrent 

increase in PSI and carboxysome-associated proteins, but the abundance of ATP synthase 

remains low throughout the time course for this treatment.  This suggests that similar to 

the control, ribulose 1,5 bisphosphate carboxylase levels are low, the PSI/PSII ratio 

increases with a concurrent increase in attempted carboxysome-associated carbon 

fixation, but contrary to the control, the ATP production could be limited because of the 

lower abundance of ATP synthase.  Direct measurements of ATP were not made, but 

limited ATP production by the light driven electron flow could cause a cascade of 

negative effects, including decrease in active transport of HCO3
- into the cell cytosol, 

which could provoke an increase in quantity of carboxysomes in order to produce the 

same amount of carbon dioxide for ribulose 1,5 bisphosphate carboxylase to fix (Figure 

3.13).  If carbonic anhydrase were detectable, one might also expect this relative 

abundance of this enzyme to increase.  A decrease in ATP production may decrease the 

active transport of nitrate and phosphate.  This could link Cd to the nutrient phosphate, 

but also nitrate and carbon. Ribulose 1,5 bisphosphate carboxylase did not appear to 

respond to the dramatic decrease in phycocyanin observed in the control at T4; it had 

steadily decreased in relative abundance since T2.  Ribulose 1,5 bisphosphate 

carboxylase was also decreased in abundance in the 44 pM Cd2+ treatment from T3 to T5, 

however, similar to the control this decrease did not appear to be related to the decline in 

phycocyanin. 

Carbon fixation - carboxysome associated 

The products of the light reactions of photosynthesis and CO2 are used in carbon 

fixation.  Cyanobacteria can concentrate CO2 using a carbon concentrating mechanism 

involving the cell membrane and conversion to HCO3
-.  The HCO3

- is taken into the 

carboxysome where carbonic anhydrase converts it back to CO2.  Carboxysomes are 

polyhedral crystalline structures found in cyanobacteria. In literature older then fifty 

years, they used to be referred to as polyhedral bodies, but in the 70’s they were 

discovered to be structures related to photosynthesis (Yeates et al., 2008).  Structural 
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studies of the carboxysome shell itself suggest that it controls metabolite flow into and 

out of the carboxysome (Kerfeld, 2005).  The high density of ribulose 1,5 bisphosphate 

carboxylase concentrated in the carboxysome combines a molecule of CO2 with a 

molecule of ribulose 1,5 bisphosphate and water to form two molecules of glycerate-3-

phosphate, or PGA. Ribulose 1,5 bisphosphate carboxylase is the most abundant protein 

in the world (Ellis, 1979) and accounts for 70% of the carboxysome by weight, with the 

main shell proteins accounting for 17% of the carboxysome (Yeats et al., 2008).  

Although we did not detect a carbonic anhydrase, we observed four carboxysome-

associated proteins more than two-fold differentially abundant between the control and at 

least one of the Cd treatments at one of the timepoints: a possible carbon concentrating 

mechanism protein, the carboxysome shell protein, the carboxysome shell peptide and the 

small subunit of ribulose 1,5 bisphosphate carboxylase (Figure 3.13).  As with PSI 

proteins, some of the most dramatic differences in relative protein abundance between the 

treatments are observed in these carboxysome-associated proteins.  

The possible carbon concentrating mechanism protein (CcmK), carboxysome 

shell peptide and carboxysome shell protein showed similar relative abundances 

distributions with one difference (Figure 3.13).  These proteins were more abundant in 

the control and 4.4 pM Cd2+ than the 44 pM Cd2+ treatment during exponential growth 

(T1) (Figure 3.13, Table 3.2).  They were more abundant in the control than both of the 

Cd treatments during late stationary (T4) (Figure 3.13, Table II.6).  During very late 

stationary/death (T5), however, the possible CcmK and carboxysome shell peptide 

proteins were more abundant in the 44 pM Cd2+ than either the control or 4.4 pM Cd2+, 

whereas the carboxysome shell protein was more abundant in both of the Cd treatments 

relative to the control (Figure 3.13, Table 3.3). 

The small subunit of ribulose 1,5 bisphosphate carboxylase (rubisco), the enzyme 

with a Mg2+ cofactor that catalyzes the first step of the Calvin cycle, was more abundant 

in both of the Cd treatments relative to the control during mid-stationary (T3) (Figure 

3.13, Table II.3).  It was more abundant during growth, early and mid-stationary (T1, T2, 

T3) than late stationary and very late stationary/death (T4, T5) (Figure 3.13). 
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As with PSI proteins, some of the most dramatic differences in relative protein 

abundance between the treatments are observed in these carboxysome-associated proteins 

(Figure 3.13, Tables 3.2, II.2, II.3, II.6, 3.3). We see other parts of the carboxysome, the 

shell protein, the shell peptides, and the small subunit of rubisco. We do not detect the 

large subunit of rubisco, or carbonic anhydrase. 

The small subunit of ribulose 1,5 bisphosphate carboxylase was highly abundant 

during mid-stationary phase (T3) in both of the Cd treatments, whereas it had already 

begun to drop in the control treatments.  A higher abundance of this protein could 

indicate more function, or more presence with lack of function.   

The greater abundance of the small subunit of rubisco during exponential growth, 

early, and mid-stationary (T1, T2, T3) than late stationary and very late stationary/death 

(T4, T5) (Figure 3.13) suggests that the conversion of carbon dioxide to PGA is more 

active during exponential growth phase.  At T3, when rubisco and arylsulfatase relative 

abundances spike and the chlorophyll/phycoerythrin ratios start to change for the Cd 

treatments, rubisco is decreasing in the control treatment. 

The similar distribution of the possible carbon concentrating mechanism (CcmK), 

carboxysome shell peptide, and carboxysome shell protein indicates that these three 

proteins could be transcriptionally related.   

Because the only known nutritive use of Cd so far has been in a carbonic 

anhydrase in the diatom T. weissflogii, the detection of carbonic anhydrases is desirable 

(see future directions).  Synechococcus WH5701 has an annotated carbonic anhydrase, a 

possible carbonic anhydrase, a carbonic anhydrase-like protein, and carboxysome shell 

polypeptide, the latter with high similarities to β-carbonic anhydrases.   

Carbon fixation - Calvin cycle proteins 

The products of the light reactions of photosynthesis, along with CO2 are used in 

carbon fixation, the Calvin cycle.  Six proteins involved in the Calvin cycle, a 12 step 

enzymatic process, were more than two-fold differentially abundant between the control 

and at least one of the Cd treatments during one of the growth phases (Figure 13.14).  

These 6 proteins are the aforementioned small subunit of rubisco (Step 1), 
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phosphoglycerate kinase (Step 2), glyceraldehyde-3-phosphate dehydrogenase (NADP+; 

phosphorylating) (Step 3), triosephosphate isomerase (Step 4), transketolase (Steps 7 and 

10), ribose 5-phosphate isomerase (Step 12) (Figure 13.14).  Three other proteins 

involved in carbon fixation were also differentially abundant.  These proteins are malate 

oxidoreductase, aspartate aminotransferase, and ribulose-phosphate-3-epimerase.   

Phosphoglycerate kinase, step 2 of the Calvin cycle, catalyzes the reaction of 

glycerate-3-phosphate (PGA), and ATP to 1,3 bisphosphoglycerate (BPG) and ADP.  It 

was more abundant in the control than both of the Cd treatments during early stationary 

and very late stationary/death (T2 and T5) (Figure 13.14, Tables II.2, 3.4).   

Glyceraldehyde-3-phosphate dehydrogenase (NADP+; phosphorylating), step 3 of 

the Calvin cycle, catalyzes the reaction of BPG and NADPH to glyceraldehyde-3-

phosphate (GAP) and NADP+.  It was more abundant in the 44 pM Cd2+ than the control 

and 4.4 pM Cd2+ treatments during exponential growth (T1) (Figure 13.14, Table 3.1).  It 

was more abundant in the control than both of the Cd treatments during mid-stationary 

(T3) (Figure 13.14, Table II.4).  During very late stationary/death (T5), it was more 

abundant in the control than the 4.4 pM Cd2+ treatment (Figure 13.14, Table 3.4). 

Triosephosphate isomerase, step 4 of the Calvin cycle catalyzes the reaction of 

GAP to dihydroxyacetone phosphate (DHAP).  It is more abundant in the control than the 

44 pM Cd2+ treatment during late stationary/death (T5) (Figure 13.14, Table 3.4). 

Transketolase, steps 7 and 10 of the Calvin cycle, catalyzes the reaction of 

fructose 6-phosphate (F6P) and GAP to erythrose 4-phosphate (E4P) and xyulose 5-

phosphate (X5P) in step 7 and the reaction of sedoheptulose 7-bisphosphate (S7P) and 

GAP to ribose 5-phosphate (R5P) and X5P in step 10.  Transketolase is more abundant in 

the 44 pM Cd2+ treatment than the control during exponential growth (T1) (Figure 13.14, 

Table 3.1).  It is more abundant in both Cd treatments than the control during late 

stationary (T4) (Figure 13.14, Table II.5).  It is more abundant in the control than both Cd 

treatments during very late stationary/death (T5) (Figure 13.14, Table 3.4). 

Ribose 5-phosphate isomerase, step 12 of the Calvin cycle, catalyzes the reaction 

of R5P to ribulose 5-phosphate (Ru5P).  It is more abundant in the control than both Cd 
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treatments during late stationary (T4) (Figure 13.14, Table II.6).  It is more abundant in 

the control and the 4.4 pM Cd2+ treatment than the 44 pM Cd2+ treatment during very late 

stationary/death (T5) (Figure 13.14, Table 3.4). 

Malate oxidoreductase is more abundant in the 44 pM Cd2+ treatment than the 

control and the 4.4 pM Cd2+ treatment during growth (T1) (Figure 13.14, Table 3.1).  It is 

more abundant in both Cd treatments than the control during late stationary (T4) (Figure 

13.14, Table II.5).  During very late stationary/death (T5), however, it is more abundant 

in the control than both Cd treatments (Figure 13.14 and Table 3.4). 

As well as being involved in carbon fixation, aspartate aminotransferase is also 

involved in amino acid metabolism, including cysteine.  Like malate oxidoreductase, it is 

more abundant in the 44 pM Cd2+ treatment than the control and the 4.4 pM Cd2+ 

treatment during exponential growth (T1) (Figure 13.14, Table 3.1) and is more abundant 

in both Cd treatments than the control during late stationary (T4) (Figure 13.14, Table 

II.5).  During very late stationary/death (T5), however, unlike malate oxidoreductase, it is 

more abundant in both the control and the 4.4 pM Cd2+ treatment than the 44 pM 

Cd2+treatment (Figure 13.14, Table 3.4). 

Ribulose-phosphate-3-epimerase catalyzes the reaction of R5P into X5P. It is 

more abundant in the control than the 4.4 pM Cd2+ treatment during exponential growth 

phase (T1) (Figure 13.14, Table 3.2).  It is more abundant in the control than the 44 pM 

Cd2+ during very late stationary/death (T5) (Figure 13.14, Table 3.4). 
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Many of these proteins have relative abundance distributions opposite that of the 

carboxysome-associated proteins (Figures 3.13, 3.14).  The Calvin cycle is affected by 

Cd: 6 of the 12 enzymes involved in the Calvin cycle and three other proteins were more 

than two-fold differentially abundant between the control and at least one of the Cd 

treatments at one of the time points (Figure 3.14).   

Five proteins show a similar distribution pattern with 3 of the 6 Calvin cycle 

enzymes along with two of the other proteins; they are phosphoglycerate kinase (Step 2), 

glyceraldehyde-3-phosphate dehydrogenase (NADP+; phosphorylating) (Step 3), 

transketolase (Steps 7 and 10), malate oxidoreductase, and aspartate aminotransferase 

(Figure 3.14).  Three more proteins have similar distributions to one another: 

triosephosphate isomerase (Step 4), ribose 5-phosphate isomerase and ribulose phosphate 

3-epimerase (Figure 3.14).  Rubisco has a unique distribution among the 9 proteins, most 

resembling the 5 proteins with a similar distribution pattern (Figure 3.13).  Overall, many 

of the Calvin cycle enzymes are affected in a similar way, suggesting similar regulation. 

Arylsulfatases 

Two proteins involved in steroid and lipid biosynthesis, an arylsulfatase and a 

putative arylsulfatase, showed dramatic differential abundances throughout this 

experiment.  These arylsulfatases were more than two-fold differentially abundant 

between the control and at least one of the Cd treatments at three of the timepoints 

(Figure 3.15). At least one of these proteins was differentially abundant at every 

timepoint. 

The arylsulfatase was more abundant in both Cd treatments than the control 

during exponential growth (T1) (Figure 3.15, Table 3.1).  It was more abundant in the 

control and 4.4 pM Cd2+ treatment than the 44 pM Cd2+ treatment during early stationary 

(T2) (Figure 3.15, Table II.2). During very late stationary/death (T5), however, it was 

more abundant in the control than the Cd treatments (Figure 3.15, Table 3.4). 

The putative arylsulfatase showed a distribution similar to the arylsulfatase in that 

it was more abundant in both Cd treatments than the control during exponential growth 

(T1), although unlike the arylsulfatase it was also twice as abundant in the 44 pM Cd2+ as 
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the 4.4 pM Cd2+ (Figure 3.15, Table 3.1). Unlike the arylsulfatase, the putative 

arylsulfatase was more abundant in both Cd treatments than the control during mid-

stationary (T3) (Figure 3.15, Table II.3).  Like the arylsulfatase, as the experiment 

progressed through the last two stationary phases, the protein was more abundant in the 

control compared to the two Cd treatments.  For the putative arylsulfatase, this occurred 

in late stationary (T4) (Figure 3.15, Table II.6), compared to the arylsulfatase in which 

the greater abundance in the control than the Cd treatment occurred in very late 

stationary/death (T5). 

Combining the relative abundances of the arylsulfatases, the same overall trends 

remain with greater abundance in the Cd treatments than the control during exponential 

growth (T1) (Figure 3.15 and Table 3.1), in the control and 4.4 pM Cd2+ treatment than 

the 44 pM Cd2+ treatment during early stationary (T2) (Figure 3.15 and Table II.2), in 

both Cd treatments than the control during mid-stationary (T3) (Figure 3.15 and Table 

II.3) and in the control than both Cd treatments during very late stationary/death (T5) 

(Figure 3.15 and Table 3.4). 

Sulfur metabolism is linked with lipid and steroid biosynthesis.  The involvement 

of arylsulfatases in steroid and lipid biosynthesis is directly related to sulfur metabolism. 

Arylsulfatases remove sulfate groups from carbohydrates and other compounds.  In 

Chlamydomonas reinhardtii the presence of arylsulfatases implies sulfur starvation 

(Zhang et al., 2004).  We see an over abundance of arylsulfatases in the Cd treatments 

relative to the control during exponential growth (T1).  This could imply that the Cd 

treatments are procuring sulfur from sulfate esters. The extra sulfur could be used to 

synthesize cysteine, which can be used to make glutathione, other small thiols and 

possibly metallothionein, all of which could bind Cd.  Sulfate, cysteine, and other 

components of the cysteine biosynthesis pathway have been shown to repress 

arylsulfatase formation in different ways in different bacteria, suggesting regulation of 

this enzyme (Fitzgerald, 1976 and references therein).  This supports the hypothesis that 

Cd is being bound by cysteine or other thiols comprised of cysteine, causing a shortage, 

activating the formation of arylsulfatases to produce more cysteine.  In a different study, 
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the arylsulfatase from Helix pomatia, a snail, was activated by Cd2+in solution; the 

authors suggested the recovery of sulfate for the ensuing processing of Cd (Tokheim et 

al., 2005).  

 
In humans, arylsulfatases are found in lysosomes in the brain.  A deficiency of 

arylsulfatases causes lysosomal storage disease, a disorder that affects the myelin sheath 

around nerve cells and results in the accumulation of sulfatide, which in turn affects 

trafficking homeostasis.  The presence of sulfatases is the earliest sign of Alzheimers 

disease, metachromatic leukodystrophy.  In cyanobacteria, we noticed a higher mortality 

rate in treatments with added Cd, and the differences in arylsulfatases relative 

abundances were among the most notable.  The Cd treatments have more arylsulfatases in 

exponential growth phase and the control had a high abundance of them during stationary 
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phase, perhaps indicating sulfur starvation or some stationary phase process.  The 

presence of arylsulfatases observed in this experiment could be a sign of cellular death 

and destruction in cyanobacteria (see future directions).  The increased exposure to Cd 

could result in the induction of apoptosis by an as yet unknown mechanism.  This 

mechanism could be related to Zn, the observed disturbance in carbon metabolism, the 

observed disturbance in sulfur metabolism, or perhaps an interference with calcium (Ca).  

Cd and Ca have similar atomic radii (Ca2+-1.06 A compared to Cd2+ -1.03 A, 

Goldschmidt, 1964).  In mammalian cells, calcium is associated with apoptosis, but these 

pathways are poorly understood and undocumented in cyanobacteria. 

The arylsulfatase and putative arylsulfatase showed dramatic differential protein 

abundances throughout this experiment.  These arylsulfatases were more than two-fold 

differentially abundant between the control and at least one of the Cd treatments at three 

of the time points (Figure 3.15).  At least one of these proteins was differentially 

abundant at every time point. 

Judging by the combined arylsulfatase relative protein abundance distributions in 

the control, arylsulfatases are not abundant during growth, become abundant upon the 

transition to stationary phase, and decrease to a steady level of moderate abundance 

(Figure 3.15).  Abundances in the Cd treatments do not follow this distribution, both 

having greater abundances than the control during growth and low abundances during 

death phase (T5) (Figure 3.15, Tables 3.1, II.2, II.3, II.6, 3.4).  The 4.4 pM Cd2+ 

treatment mimics the control in the drastic increase of arylsulfatase upon the transition to 

stationary phase, but unlike the control the 4.4 pM Cd2+ treatment maintains arylsulfatase 

abundance through mid-stationary phase (T3) before dropping to late stationary phase 

(T4) low abundances. The 44 pM Cd2+ has moderately high abundances during growth 

phase, unlike the control and 4.4 pM Cd2+ treatment and does not spike in the transition 

to stationary phase (T2), but does spike during mid-stationary (T3), then declines rapidly.  

This pattern suggests that arylsulfatases are important in the transition to stationary phase 

and cells require some level of arylsulfatases throughout stationary phase.  The transition 

to stationary phases may involve changes in many aspects of cellular metabolism, 
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perhaps including protein synthesis, cellular growth, rearrangement of lipids and 

degradation of phycobilisomes.  Cd disrupts this pattern presumably by interfering in 

cysteine metabolism.  Also, in a possible link to carbon metabolism, the combined 

arylsulfatase protein distributions actually look similar to that of the small subunit of 1,5 

ribulose bisphosphate carboxylase.   

It is interesting to note that the scavenging of phosphorus can occur in WH5701.  

Sulfolipids can be used instead of phospholipids under conditions of phosphate limitation 

(Van Mooy et al., 2006).  The cultures in this experiment are phosphate replete, so one 

might not expect there to be sulfolipids.  Sulfolipids in this experiment, then, would 

probably not be the substrate for arylsulfatases.  The substrate for the arylsulfatases is 

unknown.  We do observe that in the presence of Cd, there is a faster decline in relative 

abundance of pigments, which contain thioether linkages.  Perhaps thioether linkages are 

a source of organic sulfur substrate for arylsulfatases. 

Sulfur and cysteine metabolism 

Five proteins involved in sulfur and/or cysteine metabolism were > two-fold 

differentially abundant between the control and at least one of the Cd treatments (Figure 

3.16).  These proteins are aspartate aminotransferase (already presented in Figure 3.14, 

carbon fixation - Calvin cycle and others), cysteine synthase A, S-adenosylmethionine 

synthetase, 5’ methylthioadenosine phosphorylase and glutamate synthetase type III. 

Cysteine synthase catalyzes the reaction of O3-acetyl-L-serine and hydrogen 

sulfide to form L-cysteine and acetate.  It was more abundant in both Cd treatments than 

the control during late stationary phase (T4) (Figure 3.16, Table II.5).  It was more 

abundant in the control than the 44 pM Cd2+ treatment during very late stationary/death 

(T5) (Figure 3.16, Table 3.4). 

S-adenosylmethionine synthetase catalyzes the reaction of methionine, ATP and 

water to S-adenosylmethionine, phosphate and diphosphate.  It was more abundant in the 

44 pM Cd2+ treatment than the control during exponential growth (T1) (Figure 3.16, 

Table 3.1). During very late stationary/death (T5), however, it was more abundant in the 

control than the Cd treatments (Figure 3.16, Table 3.4). 
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5’ methylthioadenosine phosphorylase was more abundant in the 4.4 pM Cd2+ 

than the control during mid-stationary (T3) (Figure 3.16, Table II.3).  It was more 

abundant in both of the Cd treatments than the control during late stationary (T4) (Figure 

3.16, Table II.5). During very late stationary/death (T5), however, it was more abundant 

in the control than the Cd treatments (Figure 3.16 and Table 3.4). 

Glutamate synthetase type III uses ATP to catalyze the reaction of NH3 and 

glutamate to form glutamine, hence it is also important in nitrogen metabolism.  It was 

more abundant in the 44 pM Cd2+ treatment than the control during exponential growth 

(T1) (Figure 3.16, Table 3.1).  It was more abundant in the control than the 44 pM Cd2+ 

treatment during early stationary (T2) (Figure 3.16, Table II.2).  It was more abundant in 

the control and the 4.4 pM Cd2+ than the 44 pM Cd2+ treatment during mid-stationary 

(T3) (Figure 3.16, Table II.4).  It was more abundant in both Cd treatments than the 

control and in addition was more abundant in the 4.4 pM Cd2+ than the 44 pM Cd2+ 

treatment during late stationary (T4) (Figure 3.16, Table II.5). During very late 

stationary/death (T5) it was more abundant in the control than the Cd treatments and was 

more abundant in the 44 pM Cd2+ than the 4.4 pM Cd2+ treatment (Figure 3.16, Table 

3.4). 

In addition to the arylsulfatase and putative arylsulfatase, 5 proteins involved in 

sulfur and/or cysteine metabolism were > two-fold differentially abundant between the 

control and at least one of the Cd treatments during at least one of the growth phases 

(Figure 3.16, Tables 3.1, II.2, II.3, II.5, 3.4).  These proteins are cysteine synthase A, S-

adenosylmethionine synthetase, 5’ methylthioadenosine phosphorylase, and glutamate 

synthetase type III.  Cd appears to affect sulfur and cysteine metabolism.  Low molecular 

weight thiols and metallothioneins are known to bind metals.  In this experiment, 

metallothioneins were detected when protein tolerances were lowered, but in small 

amounts.  Quantification using a triple quadrupole mass spectrometer would allow 

quantification of this protein.  In a repeat experiment, particulate and dissolved total and 

reduced thiols were measured by HPLC by Tristan Kading.  During late log/early 

stationary phase (judging by fluorescence data) in only the 44 pM Cd2+ treatment, a pool 
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of circa 1 to 10 nM particulate total glutathione is present, presumably oxidized 

glutathione.  These data support an alteration in sulfur and cysteine metabolism in the 

presence of Cd2+. 

Glutathione is a tri-peptide containing the amino acids glutamate, cysteine and 

glycine.  If the 44 pM Cd2+ treatment produced a high amount of glutathione, it would 

have needed greater amount of glutamate and glycine in addition to cysteine, which 

would result in increased need for nitrogen.  Glutamate is also the structural base for δ-

aminolevulinic acid, which becomes porphobilinogen.  As discussed in the chlorophyll 

biosynthesis section (Figure 3.8) increased relative abundances of glutamate-1-

semialdehyde transferase and δ-aminolevulinic acid dehydratase could imply that this 

pathway was more active in the high Cd treatment, which would require greater 

quantities of glutamate.  Increased abundances of arylsulfatases as discussed (Figure 

3.15) could imply a greater need for sulfur, which could be used to make cysteine.  There 

is also a polar amino acid transport system substrate-binding protein, WH5701_11799 

that is more than two-fold greater in abundance in the Cd treatments during exponential 

growth phase (T1) (Table 3.1).  Glycine and cysteine are polar amino acids.  Also, it is 

interesting to note that low levels of cysteine were measured in the media of a repeat 

experiment and these levels were highest in the control (Kading and Cox et al., 

unpublished data).  Taken together with the upregulated amino acid transporter, the cells 

may be importing cysteine.  In addition, aspartate aminotransferase, involved in the 

Calvin cycle and also amino acid synthesis was more abundant in the high Cd treatment 

than the control (Figure 3.14, Table 3.1).  All of these data are consistent with the idea 

that the cells are making sulfur compounds, in this case glutathione, to perhaps 

ameliorate exposure to chronic Cd2+.   
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Oxidative stress  

Four proteins involved in oxidative stress were > two-fold differentially abundant 

between the control and at least one of the Cd treatments (Figure 3.17, Table 3.1, II.5, 

3.3, 3.4).  These proteins are rehydrin, superoxide dismutase, a putative DNA protection 

during starvation or oxidative stress transcription regulator protein, and a 

fungal/archaeal/bacterial haem catalase/peroxidase.  Rehydrin is more abundant in the 

control than the 4.4 pM Cd2+ during late stationary (T4) (Figure 3.17 and Table II.2).  

Superoxide dismutase is more abundant in the control than the 44 pM Cd2+ treatment 

during very late stationary/death (T5) (Figure 3.17 and Table 3.4).  Superoxide dismutase 

may require Cu/Zn in eukaryotic organisms and Fe, Mn, or Ni in prokaryotic organisms.  

The putative DNA protection during starvation or oxidative stress transcription regulator 

protein is more abundant in the 4.4 pM Cd2+ than either the control or 44 pM Cd2+ 

treatment during very late stationary/death (T5) (Figure 3.17 and Table 3.3).  The 

fungal/archaeal/bacterial haem catalase/peroxidase is more abundant in both of the Cd 

treatments than the control during late stationary (T4) (Figure 3.17 and Table II.5).  Cd2+ 

appears to affect the relative protein abundances of proteins involved in oxidative stress, 

but not in as extreme a fashion as proteins involved in carbon or sulfur metabolism. 
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Genetic information processing protein/protein synthesis 

There are many proteins involved in genetic information processing that were > 

two-fold differentially abundant between the control and at least one of the Cd treatments 

(Figure 3.5, 3.18).  A few of them are depicted here including 50S ribosomal protein L2, 

30S ribosomal protein S4, polyribonucleotide nucleotidyltransferase, elongation factor 

EF-2, and possible protein phosphatase 2C. 

The ribosomal proteins 50S L2 and 30S S4, involved in protein synthesis, are 

more abundant in the Cd treatments during growth (T1) (Figure 3.18, Table 3.1).  This 

suggests the presence of Cd2+ causes an upregulation in the synthesis of these proteins 

and also implies that more protein synthesis is occurring in the Cd2+ treatments than the 

control during growth phase. The greater abundance of ribosomal proteins in the Cd 

treatments relative to the control during T1 could perhaps be due to the triggering of a 

cell death pathway or the earlier entrance of the Cd treatments into a metabolic state 

resembling stationary phase.  

The polyribonucleotide nucleotidyltransferase is more abundant in the 44 pM 

Cd2+ treatment than the control during growth and mid-stationary (T1, T3) (Figure 3.18, 

Tables 3.1, II.3).  Elongation factor EF-2 is more abundant in the 44 pM Cd2+ treatment 

than the control during growth (T1) (Figure 3.18, Table 3.1).  It is more abundant in the 

4.4 pM Cd2+ treatment than the control during late stationary (T4) (Figure 3.18, Table 

II.5).  It is more abundant in the control than both Cd treatments in very late 

stationary/death (T5) (Figure 3.18, Table 3.4).  The possible protein phosphatase 2C is 

more abundant in the control and the 4.4 pM Cd2+ treatment than the 44 pM Cd2+ 

treatment during growth (T1) (Figure 3.18, Table 3.2).  It is more abundant in the control 

than both Cd treatments during late stationary (T4) (Figure 3.18, Table II.6).  It is more 

abundant in the 44 pM Cd2+ treatment than the control and the 4.4 pM Cd2+ treatment 

during very late stationary/death (T5) (Figure 3.18, Table 3.3).  
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Other proteins  

Many other proteins were > two-fold differentially abundant between the control 

and at least one of the Cd treatments (Figures 3.19 and 3.20).  A few of them are depicted 

here including chaperonin GroEL, co-chaperonin GroES, nuclear transport factor 2, and a 

extracellular binding protein (Figure 3.19).  Note that GroEL is not differentially 

abundant, it is shown to compare to GroES.  Both of these proteins are thought to help 

fold ribulose-1,5-bisphosphate carboxylase/oxygenase (Goloubinoff et al., 1989).  The 

other proteins depicted are related to ABC transport, including a ABC-type nitrate/nitrite 

transport system substrate binding protein, ABC transporter substrate binding protein 

phosphate and a putative iron ABC transporter substrate binding protein (Figure 3.20). 

During very late stationary/death (T5) a putative iron transporter is more abundant 

in the control and 4.4 pM Cd2+ than the 44 pM Cd2+ treatment (Figure 3.20, Table 3.4).  

The fact that this protein becomes more abundant in the control and 4.4 pM Cd2+ as 

stationary phase progresses suggests that iron becomes scarce as it is utilized by the cells 

in these two treatments.  This is similar to superoxide dismutase, which also increases 

steadily throughout the course of the experiment in the control, suggesting greater 

oxidative stress as the experiment progressed.  Four possible hypotheses to explain this 

are: 1) The cells in 44 pM Cd2+ treatment are already dead or dying during T5 and do not 

need iron at that point, 2) the cells in the 44 pM Cd2+ treatment are more limited for 

something else during T5 and that limitation takes precedence over iron acquisition, 3) 

Cd is directly replacing iron somehow, and 4) Cd is triggering a sensor or somehow 

interfering with cell signaling so the mechanism indicates that the cells have an adequate 

iron supply.  Hypothesis 1 may be less likely because the 4.4 pM Cd2+ treatment has a 

similar amount of cells, in fact less cells, and has a similar rate of degradation of 

phycobilisome pigmentation during death phase suggesting that the cells in the 4.4 pM 

Cd2+ are also dead and dying, yet it has the putative iron transporter in a high abundance.  

Assuming that the presence of this transporter is indicative of iron stress or need, this 

would leave us with the question, why do the cells in the 44 pM Cd2+ not appear to need 

iron when cells are exposed to higher levels of Cd, but do appear to need iron when 
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exposed to low levels of Cd.  This would imply that between the 4.4 and 44 pM Cd2+ 

there is a threshold concentration over which the cells need iron.  Hypothesis 2 is 

plausible, but again it is unlikely that cells in the 44 pM Cd2+ would be limited for an 

element that is not limiting in the 4.4 pM Cd2+ treatment.  Hypothesis 3 is unlikely 

because it does not share the redox chemistry of iron, and likely would not function 

properly as a substitute.  In addition, when WH5701 was grown on media with no added 

iron and no added iron plus 44 pM Cd2+ and monitored physiologically, these two 

treatments both barely grew (data not shown).  This implies that Cd cannot nutritionally 

substitute for iron in this organism, as expected.  This leaves us with hypothesis 4, that 

Cd is triggering a sensor or somehow interfering with cell signaling so the mechanism 

indicates that the cells have an adequate iron supply. 

It is also interesting to note that proteins involved in heavy metal efflux are 

detected, an expected response to increased exposure of heavy metals, but the spectral 

counts are low.  The heavy metal efflux pump would need to be quantified using labeled 

peptides and a triple quadrupole mass spectrometer.   

Co-chaperonin GroES is involved in protein folding, particularly rubisco 

(Golourbinoff et al., 1989).  During growth phase, there are similar amounts of protein 

among all of the treatments (Figure 3.19). During death phase, 44 pM Cd2+ has 

approximately five times more than either 4.4 pM Cd2+ or the control.  This is just like 

many of the carboxysome-associated proteins (Figure 3.13), suggesting similar 

regulation. 
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Hypothetical proteins 

There are many hypothetical proteins that were > two-fold differentially abundant 

between the control and at least one of the Cd treatments (Figure 3.21).  A few of them 

are depicted here.  The overabundance of three hypothetical proteins in stationary phase 

relative to exponential phase suggests the function of the hypothetical proteins may have 

something to do with stationary phase metabolism.  One might expect this, because most 

researchers target their efforts towards understanding growth phase, and as a consequence 

stationary phase and cellular death are less well-studied in cyanobacteria.  Just as there 

are many Cd2+ induced genes and proteins in plant and animal cells that have unknown 

functions (Deckert, 2005), so we observed some hypothetical proteins that appear to be 

related to Cd stress.  Nucleotide BLAST searches on these eight proteins revealed 

similarities of two proteins to cyanobacterial hypothetical proteins (WH5701_14806 and 

WH5701_12034), a cyanobacterial pentapeptide protein (WH5701_07396), a 

hypothetical protein in Nitrobacter hamburgensis X14 (WH5701_09740), a Na+/alanine 

symporter (WH5701_10100) and three which did not show high similarity to any 

sequenced DNA (WH5701_04880, WH5701_09875, WH5701_08389). 
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Proteomic Data - Overall trends throughout growth of cultures 

Considering the dataset as a progression from exponential growth phase through 

death phase, and how the addition of Cd2+ affects the growth phases, the no added Cd2+ 

treatment is the control.  Because there is no Zn2+ added to the media during this 
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experiment, it could be considered Zn-deprived.  General trends consistent with the 

change in cell lifestyle from exponential growth to stationary phase in the control 

treatment are observed in proteins involved in protein synthesis, photosynthesis, 

oxidative stress, chlorophyll a biosynthesis, sulfur metabolism and iron metabolism. 

Comparing the trends in relative abundances of proteins present in the Cd2+ treatments to 

the trends observed in the no added Cd2+ treatment shows that the presence of Cd2+ 

affects the relative abundances of proteins involved in these processes.   

The relative protein abundances in the control show the presence of ribosomal 

proteins during early stationary phase (T2) (Figure 3.18) and not as much in other phases.  

This is consistent with greater protein synthesis during the transition from growth phase 

to stationary phase, as the cells cycle into stationary phase. One of the most striking 

differences with the addition of Cd2+ is the higher relative abundance of ribosomal 

proteins in the Cd2+ treatments compared to the no added Cd2+ during exponential growth 

(T1) (Figure 3.5 - Group 1, Figures 3.7, 3.18 , Table 3.1).  This suggests that the presence 

of Cd2+ is causing the upregulation of ribosomal proteins by an unknown mechanism that 

could perhaps be related to Zn.  Despite similar physiological characteristics among the 

three treatments during growth phase of relative fluorescence and growth rates, the 

greater relative abundance of ribosomal proteins could result in increased protein 

synthesis in the Cd2+ treatments compared to the control during growth phase.  During 

early stationary phase, however, the ribosomal protein relative abundances are relatively 

similar in the Cd2+ and the control treatments. The greater relative abundance of 

ribosomal proteins in the Cd2+ treatments during growth phase (T1) and the similar 

amounts of ribosomal proteins present in all treatments during early stationary phase (T2) 

could indicate an early triggering of stationary phase proteins in the Cd treatments 

relative to the control.   

The presence of four photosystem II and I proteins, psbC, photosystem II 

chlorophyll binding protein, psaB and psaF (Figures 3.10 and 3.11) during growth (T1) 

and early stationary phase (T2) and not during the remainder of stationary phase (T3-T5) 

is consistent with cells growing, dividing and photosynthesizing during growth and early 
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stationary phase and being less active during stationary phase.  Culture bottles during 

growth phase often have gas bubbles adhering to the sides and do not during stationary 

phase (observations not shown), consistent with the idea of greater photosynthetic 

activity during growth phase.  In terms of the effects of Cd2+ on the relative abundances 

of four photosystem II and I proteins, psbC, photosystem II chlorophyll binding protein, 

psaB, and psaF (Figures 3.10 and 3.11) that were present in the no added Cd2+ treatment 

during T1 and T2, these four proteins were present in the 4.4 pM Cd2+ treatment greater 

than or equal to six spectral counts during only T1 and never greater than 1 spectral count 

for the 44 pM Cd2+ treatment.  This suggests that 44 pM Cd2+ negatively affects the 

presence of these proteins, perhaps impairing the process of photosynthesis and leading 

to a premature death of the culture.  This is despite the physiological similarity of the 

cultures during growth (T1).   

The relative abundance of superoxide dismutase increases from growth through 

mid-stationary phase (T1-T3) and remains constant throughout the rest of stationary 

phase (T4 and T5) (Figure 3.17).  This suggests that the culture experienced increasing 

oxidative stress from T1-T3, the amount of oxidative stress perhaps remaining constant 

for the remainder of stationary phase (T4 and T5). The effects of Cd2+ on superoxide 

dismutase are less clear.  The relative abundance of superoxide dismutase in both Cd2+ 

treatments was similar to the control during growth (T1) and early stationary phase (T2) 

and highest during mid-stationary phase (T3).  Unlike the control, in which the relative 

abundance remained constant, the relative abundance of superoxide dismutase decreased 

for late stationary (T4) and death phase (T5).  This suggests that Cd2+ affects the level of 

oxidative stress in the cells, or the signaling inside the cells that recognizes oxidative 

stress.  Perhaps these differences in superoxide dismutase relative abundances reflect the 

earlier and faster death of the cultures with added Cd2+.   

The five detected proteins involved in the biosynthesis of chlorophyll a overall 

had greater abundances during early stationary phase (T2), otherwise were of lower 

abundance (Figure 3.8). Cd2+ affects the relative abundances of proteins involved in the 

chlorophyll a biosynthesis pathway, as discussed above (see chlorophyll biosynthesis).  
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An arylsulfatase and a putative arylsulfatase were not abundant during exponential 

growth (T1) and were the most abundant during early stationary phase (T2) suggesting a 

shifting of sulfur metabolism into stationary phase (Figure 3.15). Cd2+ affects these 

proteins, also as discussed above (see arylsulfatases).  A putative iron ABC transport 

substrate binding protein was more abundant during mid-stationary to very late stationary 

(T3-T5) (Figure 3.20).  This could suggest increasing iron stress throughout the life of the 

culture, as discussed above (see other proteins).  Overall, the regulation of photosynthesis 

and cell death may be correlated and related to the presence of metals, especially Zn.   

Synechococcus WH5701 compared to Chlamydomonas reinhardtii cadmium response 

The comparison of the proteome response of this marine unicellular 

photosynthetic cyanobacterium, Synechococcus WH5701 (this study) with the freshwater 

unicellular photosynthetic algae, Chlamydomonas reinhardtii (Gillet et al., 2006) shows 

that these organisms react quite differently to chronic Cd stress.  Although there are three 

orders of magnitude more total Cd added to Chlamydomonas reinhardtii than 

Synechococcus WH5701 and the toxicity thresholds are quite different in these two 

organisms, the comparison yields useful insight.  

Cells exposed to 150 µM Cd in Chlamydomonas reinhardtii showed a decrease in 

abundance of the large and small subunits of ribulose-1,5-bisphosphate 

carboxylase/oxygenase as well as other enzymes utilized in photosynthesis, the Calvin 

cycle and chlorophyll biosynthesis (Gillet et al., 2006).  During growth phase, we 

detected the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, but saw 

no relative change.  We observed an increase, not a decrease in chlorophyll biosynthesis 

proteins.  Similar to C. reinhardtii we observed a decrease in PSI proteins and carbon 

fixation related proteins.  Also decreased in abundance in C. reinhardtii were proteins 

involved in fatty acid, amino acid, and protein biosynthesis (Gillet et al., 2006).  Contrary 

to C. reinhardtii we observed an increase in proteins related to amino acid and protein 

biosynthesis in WH5701.  We did observe decreased abundance of some hypothetical 

proteins, although their functions remain unknown. 

Proteins more abundant with the presence of 150 µM Cd in Chlamydomonas 
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reinhardtii were those involved in glutathione synthesis, ATP metabolism, oxidative 

stress, and protein folding (Gillet et al., 2006).  Most of the Cd sensitive proteins were 

regulated through thioredoxin and glutaredoxin, two major cellular thiol redox systems 

(Gillet et al., 2006).  Of the 26 proteins less abundant by at least a factor of 1.5 in the 

presence of Cd in C. reinhardtii, we could identify 13 of these proteins during 

exponential growth in WH5701, 11 with spectral counts of at least four.  Of these 11 

proteins, Cd2+ in WH5701 did not affect 5 and 6 were actually more abundant in Cd2+ 

treatments by at least a factor of 1.5.  Of the 16 proteins more abundant by at least a 

factor of 1.5, excluding ATP synthase subunits in the presence of Cd in C. reinhardtii, we 

could identify 5 proteins in exponential growth in WH5701, only 2 with spectral counts 

of at least 4.  Of these two proteins, glutathione S-transferase was not affected by Cd in 

WH5701 and inorganic pyrophosphatase was also more abundant in Cd treatments by a 

factor of 1.2 and 1.6 for 4.4 and 44 pM Cd2+, respectively.  Various ATP synthase 

subunits were more abundant in C. reinhardtii with the addition of Cd.  Unlike in C. 

reinhardtii, 6 various subunits of ATP synthase observed in WH5701, with spectral 

counts of at least four, Cd caused a decrease in abundance in the 44 pM Cd2+ treatment 

and a slight increase in the 4.4 pM Cd2+ treatment for four of the subunits.  The 

remaining two subunits of ATP synthase remained the same as the control at the 4.4 pM 

Cd2+ treatment and decreased with the 44 pM Cd2+. 

Synechococcus WH5701 comparison to a marine bacterium stationary phase response 

Sowell et al., 2008 studied the proteome response of the marine bacterium 

Candidatus Pelagibacter ubique to stationary phase.  They found that this organism 

increases the abundance of a few proteins that contribute to cellular homeostasis rather 

than remodeling the entire proteome upon adaptation to stationary phase (Sowell et al., 

2008).  The proteins that increased in abundance were OsmC and thioredoxin reductase 

(these two proteins may decrease oxidative damage), molecular chaperones, enzymes 

involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent 

transcription termination and the signal transduction enzyme CheY-FisH (Sowell et al., 

2008).  Similarly, in stationary phase compared to exponential, we observed an increase 
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in superoxide dismutase (Figure 3.17), which mitigates oxidative damage and S-

adenosylmethionine synthetase, a protein involved in methionine and cysteine 

biosynthesis (Figure 3.16).  

Environmental Relevance of Results 

This experiment was performed on cell cultures with environmentally relevant 

concentrations of trace metals.  The concentrations of NO3
- (1.1 mM) and PO4

3- (65 µM), 

however, were higher than those normally measured in the environment, deliberately in 

order to not limit the cells for these major nutrients, and to produce high densities of cells 

for protein analysis in a reasonable amount of time using a reasonable amount of 

oligotrophic seawater. 

Death of phytoplankton in the sea is generally attributed to grazing or predation 

(Walsh, 1983), so the laboratory study of stationary and death phase can perhaps be 

considered to have been neglected.  More recently, the presence of proteases coincident 

with cell death in cultures of diatoms suggested the importance of cell death processes to 

cycling of organic matter in aquatic ecosystems (Berges and Falkowski, 1998).  

Programmed cell death has been documented in several phytoplankton species, including 

the dinoflagellete, Peridinium gatunense, in which an excreted thiol protease is thought to 

coordinate cell death in culture and in blooms in the environment (Vardi et al., 2007).  

As oceans change Synechococcus WH5701 could be an important cyanobacterial 

strain due to its robustness (variable salinity and nutrient tolerances).  As of now, 

naturally-occurring chronic Cd stress to cyanobacteria could really only have the chance 

to be observed in upwelling regions and maybe some coastal, and as it is the presence of 

Zn and organic ligands in upwelling regions would serve to buffer the toxicity of Cd in 

most instances.  In general, the presence of complex microbial communities probably 

would alleviate most potential for Cd stress, due to differential uptake, adsorption to 

surfaces, and complexation with ligands.  Higher dissolved Cd concentration can 

sometimes be observed in oligotrophic waters (Noble et al., unpublished data).  
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CONCLUSIONS 

In conclusion, in the absence of added Zn, chronic Cd2+ exposure has a major 

impact on the metabolism of WH5701, as evidenced by dramatic changes in the relative 

protein abundances.  Changes are evidenced in proteins involved in chlorophyll a 

biosynthesis, photosynthesis (phycobilisome, photosystem II, photosystem I), carbon 

fixation (carboxysome, Calvin cycle, others), steroid and lipid biosynthesis, sulfur and/or 

cysteine metabolism, oxidative stress, genetic information processing and others, 

suggesting that Cd2+ affects the fundamental functioning of the cell.  Changes in 

hypothetical proteins are also evinced.  Physiological measurements during growth phase 

show little difference between Cd2+ treatments and the control, yet based on changes in 

protein relative abundances, cells are affected by chronic Cd2+ stress.  Chronic Cd2+ 

increases the abundance of arylsulfatases, which have been noted to increase in cells that 

are experiencing sulfur starvation, and other proteins involved in the making of cysteine, 

an amino acid involved in thiols, metallothioneins and sulfur metabolism.  In addition, 

measurement of particulate glutathione, a low molecular weight thiol, in a repeat 

experiment showed a large quantity of this metabolite in the high Cd2+ treatment. 

Relative protein abundances also yielded insights into the observed physiological 

changes in the Cd2+ treatments during stationary and death phases.  Changes in relative 

abundances of chlorophyll biosynthesis proteins may help explain the increase in 

chlorophyll a maximum observed in the Cd treatments.  The strong effect of Cd on 

cellular metabolism may help explain the early death in the Cd treatments compared to 

the control.  The physiological effects of increased maximum chlorophyll a fluorescence 

and faster mortality with the addition of picomolar free Cd2+ were not observed when 

picomolar free Zn2+ was present in the media.  This suggests that the presence of Zn2+ 

alleviated Cd2+ toxicity and Cd2+ may have been affecting Zn2+ systems when Zn2+ was 

absent.   

Comparison of the reaction of WH5701 to chronic Cd stress in an eukaryotic 

algae C. reinhardtii showed both similarities and differences in terms of changes in 

relative protein abundances.  Some proteins changed in abundance in a similar way, 
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including similar decreases in PSI proteins and carbon fixation related proteins.  Overall 

however, these two unicellular photosynthetic organisms reacted differently to chronic 

Cd stress: WH5701 was observed to have an increase in chlorophyll a, amino acid and 

protein biosynthesis proteins, whereas C. reinhardtii showed a decrease in proteins of 

these biosynthesis functions. 

This study also examined the change in the proteome from exponential growth 

throughout stationary phase documenting the decrease in the relative abundances of 

ribosomal proteins, among others and increase in superoxide dismutase, among others 

from exponential throughout stationary phase.  In addition, this study also identified 

many hypothetical proteins of unknown function, which change in abundance from 

growth to stationary phase and with Cd stress.  This gives insight into the possible 

function of these proteins for future investigation. 

These experiments were performed in continuous light with replete 

macronutrients, and although NO3
- and PO4

3- concentrations were higher than those 

found in the environment, clues about the functioning of cyanobacteria in the greater 

ocean ecosystem can be gleaned.  Our results indicate that cyanobacteria are versatile and 

can survive in changing environmental conditions by adjusting their cellular functioning 

as discerned by analyzing differences in their relative protein abundances.  In the ocean, 

free-floating cyanobacteria existing in the mixed layer may be exposed to different light, 

nutrient, and metal concentrations, as well as a changing microbial consortium.   

 

FUTURE DIRECTIONS 

 The physiological effects of increased maximum chlorophyll a fluorescence of 

Cd2+ treatments above the control and the faster death rates disappear with the presence 

of Zn2+ added to the media.  To see whether the presence of Zn2+ buffers Cd2+ toxicity on 

a cellular level, this experiment could be performed with Zn2+ added to the media.  

Perhaps the carboxysome proteins would not be affected by 44 pM Cd2+ as they were in 

this experiment without Zn2+ in the media. 

 Intriguing is the possibility that Cd2+ triggers apoptosis.  There are no annotated 



  
 155 
 
 
 

caspases in WH5701.  All possible caspases could be easily cataloged and blasted against 

the WH5701 genome at the nucleotide level.  Any hits could be added to our WH5701 

database and see if we detected those proteins. 

Despite the detection of many carboxysome protein components, no carbonic 

anhydrases were detected.  Since the only known nutritive use of Cd is in a carbonic 

anhydrase of T. weissflogii (Lane and Morel, 2000; Lane et al., 2005; Park et al., 2007; 

Xu et al., 2008), detection of this protein is desirable.  As a simple first pass, the carbonic 

anhydrase might be in a different protein fraction.  During protein extraction, after 

resuspension of the harvested cell pellet in one 100 µM ammonium bicarbonate, 

sonication and centrifugation, only about half of the supernatant was acetone precipitated.  

The remainder of the supernatant was evaporated by speed vacuum, stored overnight at -

80oC and then extracted and digested with the acetone-precipitated samples.  This means 

that this additional protein fraction is safely in the -80oC, ready for mass spectrometric 

global proteomic analysis. 

The further investigation of PSII/PSI ratios and how these systems are regulated 

would be interesting because it is flexible.  PSII core protein D2 was detected at the 

highest count of 3.  A putative PSII reaction center Psb28 at the highest count of 18 and 

PSII complex extrinsic protein PsuB at the highest count of 42 were detected.  Both of 

these have the greatest abundance during the 44 pM Cd2+ death phase T5.  This suggests 

that Cd interferes with regulation at T5 in high Cd.  A similar pattern is observed in a few 

carboxysome proteins, PSI proteins, among others.  These two PSII proteins do not show 

an increase in relative protein abundance in the no added Cd treatment during the 

decrease in cell counts observed from T3 to T4. 

Also of note is the relationship observed in Figure 4.4d between dose of Cd and 

the ratio of chlorophyll a/phycoerythrin fluorescence.  It can be used as a biosenser for 

Cd at concentrations as low as 0.44 pM Cd2+ (data not shown), except that it does not 

hold in the presence of Zn, rendering its practicality moot.  Note that there are 

fluorescence-based biosensors for Zn that utilize carbonic anhydrase (see work of 

Richard B. Thompson). 
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Chapter 4 
 

Oceanic Synechococcus WH8102 physiological and proteomic response to acute 
cadmium addition under zinc deficient and low phosphate conditions 

 
Abstract 
Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from 
the Sargasso Sea.  It is adapted to the open ocean with lower trace metal availability and 
low variability in irradiance with deep mixed layer depths relative to coastal waters.  To 
test the response of this organism to free cadmium (Cd), generally considered a toxin, 
four cultures were grown in a matrix of high and low zinc (Zn) and phosphate (PO4

3-) and 
were acutely exposed to 4.4 pM free Cd2+ during mid-log phase and harvested after 24 h.  
Cell number, relative chlorophyll a and phycoerythrin fluorescence were monitored 
throughout growth phase, where Zn and PO4

3- had little effect on growth rates, but in the 
final 24 h of the experiment three effects were noticed: 1) low PO4

3- treatments showed 
increased instantaneous growth rates relative to high PO4

3- treatments, 2) the Zn-high 
PO4

3- treatment appeared to enter stationary phase, and 3) Cd increased growth rates even 
more in the both the low PO4

3- and Zn treatments.  Global proteomic analysis of relative 
protein abundance revealed that: 1) Zn appeared to be vital to the PO4

3- response in this 
organism, 2) Cd caused more proteomic changes at low PO4

3-, and 3) in the presence of 
both replete PO4

3- and acute Cd the proteome was almost indifferent to the presence of 
Zn.  Comparison to a literature transcriptome study of PO4

3- stress in this organism grown 
in a media containing Zn by Tetu et al., 2009 showed a similar PO4

3- response in the 
presence of Zn, including the greater relative abundance of SYNW2391 alkaline 
phosphatase, SYNW1018 ABC phosphate binding protein (PstS) and other proteins.  In 
the absence of Zn in this experiment, however, the PO4

3- response is remarkably 
different.  In addition, SYNW0359 bacterial metallothionein (SmtA) appears correlated 
with PO4

3- stress-associated proteins.  
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INTRODUCTION 

Synechococcus WH8102 is a well-studied isolate of cyanobacteria, belonging to 

the marine cyanobacterial subcluster 5.1, MC-A group.  It was originally isolated from 

the Sargasso Sea and the fully sequenced genome is available (Palenik et al., 2003).  The 

MC-A group is thought to be the dominant Synechococcus group within the euphotic 

zone of open ocean and coastal waters (Fuller et al., 2003 and references therein).  

Previous culture studies of this organism showed that at low zinc (Zn) concentrations 

cadmium (Cd) lowered growth rates, whereas this was not observed at higher Zn 

concentrations (Saito et al., 2003). 

As discussed in Chapter 1 on pages 15-16, Cd and Zn have nutrient-like 

distributions in the ocean, implying that Cd and Zn are taken up by microorganisms in the 

surface water and remineralized at depth.  Zn is vitally important to the proper 

functionality of many enzymes, an essential metal in living organisms, whereas Cd is not.  

These metals may have different roles in different environments.  Zn is 

considered a nutrient in the open ocean.  Zn availability, for instance, may influence 

phytoplankton diversity in the Ross Sea (Saito et al., 2010).  In cyanobacteria, the Zn 

requirements are very low, consistent with the idea that cyanobacteria may have evolved 

in a sulfidic ancient ocean (Saito et al., 2003).  There are almost no studies of Zn 

handling mechanisms in marine cyanobacteria (Blindauer, 2008).  In terms of Cd, it has 

been noticed that the dissolved Cd:PO4
3- ratios are lower in the surface waters of Fe-

limited regions, implying preferential removal of Cd relative to PO4
3- in Fe-limited 

waters (Cullen, 2006; Lane et al., 2009, references therein).  

As stated, dissolved Cd and PO4
3- are correlated in the ocean, but Zn and 

phosphorus could be colimiting in some areas of the ocean.  Phosphorus is an essential 

nutrient, utilized in the cell for purposes ranging from the backbone of DNA to the 

energy currency of a cell, adenine triphosphate, ATP.  It is typically found at low 

micromolar concentrations in the ocean and is limiting in some regions.  It composes 

some 2-4% dry weight of cells and is considered by some to be the ‘staff of life’ (Karl, 

2000).  Considering Zn and phosphorus together, they are thought to exhibit Type III 
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biochemically dependent colimitation, i.e. the uptake of one nutrient, phosphorus, is 

dependent upon adequate nutrition with regard to the other, Zn (Saito et al, 2008).  Based 

on extrapolation of experimentation with the coccolithophore, Emiliania huxleyi, Zn and 

phosphorus colimitation could occur in highly oligotrophic regions such as the Sargasso 

Sea (Shaked et al., 2006). 

In this paper, the physiological and proteomic responses of the open ocean 

Synechococcus WH8102 to acute Cd exposure under varying chronic Zn and PO4
3- 

concentrations was examined.  Physiological results indicated that all treatments had 

similar growth rates throughout the first 10 days of the experiment until Cd addition, but 

in the last 24 hours of the experiment, low PO4
3- treatments showed increased 

instantaneous growth rates relative to high PO4
3- treatments.  Also, the acute addition of 

Cd increased instantaneous growth rates further above those in both the low PO4
3- and Zn 

treatments.  Global proteomic results showed a response to lowered PO4
3- in the presence 

of Zn similar to previous transcriptome studies, including a greater relative abundance of 

an SYNW2391 alkaline phosphatase (phoA), a protein thought to require Zn as a 

cofactor, and a SYNW1019 ABC phosphate binding protein (PstS).  In the absence of Zn 

with low PO4
3-, these proteins were not as abundant, and the proteome was quite 

different, suggesting a different PO4
3- response under these conditions.  SYNW0359 

bacterial metallothionein (SmtA), involved in Zn handling, showed a similar relative 

protein abundance response pattern to the alkaline phosphatase and ABC phosphate 

binding protein (PstS). 

 

METHODS 

Culturing and protein extraction 

 Axenic cultures of Synechococcus sp. WH 8102 obtained from J. Waterbury 

(Woods Hole Oceanographic Institution) and maintained in a modified PRO-TM media 

as described in Chapter 3 on pages 75-76.  The deplete Zn2+ condition had no Zn added 

whereas replete had Zn added to a total concentration of 10 nM, with the free 

concentrations based on a previous study estimated to be tens of picomolar Zn2+.  Low 
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PO4
3- cultures had 1 µM PO4

3- added, whereas high had 65 µM PO4
3-.  Acute Cd 

treatments had Cd added to a total concentration of 10 nM CdCl2, with the free 

concentration estimated to be 4.4 pM Cd2+ and blanks estimated as described in Chapter 

3 on page 76.  Cultures were grown in either 28 mL polycarbonate tubes or 500 mL 

polycarbonate bottles under 30 µmol photons (µEinstein) m-2s-1 continuous white light. 

At mid-log phase, the four cultures were split and one of each spiked with 4.4 pM Cd2+.  

The 8 resulting cultures were harvested 24 hours later (Figure 4.1).  Culture growth was 

monitored by a combination of chlorophyll a and phycoerythrin fluorescence and cell 

counting by microscopy.  All plasticware was cleaned as described in Chapter 3 on page 

76.  Growth rates were calculated from the natural log of in vivo relative chlorophyll a 

fluorescence (n = 5).  For protein samples, approximately 200 mL of culture were 

harvested and processed as described in Chapter 3 on pages 76-77. 

 
Liquid Chromatography-Mass Spectrometry (LC-MS) 

 The digests were analyzed by LC-MS using a Paradigm MS4 HPLC system with 

reverse phase chromatography, Thermo LTQ ion trap mass spectrometer and Microhm 

ADVANCE source (2 µL/min flow rate, 345 min runs, 150 mm column, 40 µL 

injections, water ACN gradient).  Each digest was injected three times for a total of 24 

mass spectrometry runs, only two digests from each treatment were analyzed.  Mass 
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spectra were processed by SEQUEST and PeptideProphet with a fragment tolerance of 

1.0 Da (monoisotopic), parent tolerance of 2.0 Da (monoisotopic, fixed modification of 

+57 on C (carbamidomethyl), variable modification of +16 on M (oxidation) and a 

maximum of 2 missed trypsin cleavages using a database including reversed proteins and 

common contaminants.   

Spectral counts of 16 files were compiled in Scaffold 3 with a peptide false 

discovery rate of 1.9%, minimum peptide and protein tolerances of 95 and 99%, 

respectively with a minimum of 2 peptides (Peng et al., 2003; Zhang et al., 2006).  A 

spectral count is the number of times a particular peptide from a protein is sampled 

during an MS/MS experiment and is indicative of protein relative abundance.  Protein 

functions were assigned by using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) unless otherwise noted. 

 

RESULTS  

Physiological Data 

 WH8102 was grown under the four variable Zn and PO4
3- conditions, Zn-high 

PO4
3-, Zn-low PO4

3-, no Zn-high PO4
3-, and no Zn-low PO4

3- (Figure 4.1).  The response 

to acute 4.4 pM Cd stress was monitored by the relative fluorescence of phycoerythrin 

and chlorophyll a in vivo and by cell counts every other day over the course of the 11 day 

experiment and four times in the last 24 hours of the experiment (Figures 4.2, 4.3).  These 

growth curves revealed four main observations: 1) the growth rates as calculated up until 

the Cd addition were similar (Figure 4.4a), 2) the Zn-high PO4
3- treatment appeared to 

enter stationary phase (Figures 4.3,4.4b), 3) the low PO4
3- treatments showed increased 

instantaneous growth rates relative to the high PO4
3- during the final 24 hours of the 

experiment (Figure 4.4b), and 4) Cd addition increased instantaneous growth rates further 

above the low PO4
3- and Zn treatments (Figure 4.4b).  The final cell numbers at harvest 

were similar for most of the treatments, but showed slightly elevated cell numbers for 

two treatments, the low PO4
3-, Cd added both with and without added Zn (Figure 4.5).   
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The ratios of chlorophyll a fluorescence per cell, phycoerythrin fluorescence per 

cell and ratios of relative chlorophyll a fluorescence to phycoerythrin fluorescence per 

cell showed deviations during the last 31 hours of the experiment (Figure 4.6).  The Zn- 

high PO4
3- treatment had the highest ratio for all three of these ratios.  This implies 

directly that there is more chlorophyll a fluorescence, less phycoerythrin fluorescence, or 

fewer cells than other treatments or a combination of these factors.  Given that the cell 

abundances in the Zn-high PO4
3- treatment are similar to the Zn-low PO4

3-, no Zn-high 

PO4
3- and no Zn-high PO4

3- + Cd treatments (Figure 4.5), this implies a difference in the 

relative fluorescence ratio among these treatments. These similar cell abundances suggest 

that: 1) the addition of Cd without Zn in the medium does not make a difference in the 

relative chlorophyll a/ phycoerythrin ratios per cell, 2) at a constant added Zn 

concentration, low PO4
3- causes more of a decrease in the chlorophyll a /phycoerythrin 

ratio than high PO4
3- and 3) at high PO4

3- the absence of Zn causes more of a decrease in 

the chlorophyll a/ phycoerythrin ratio.   

Considering treatments with different final cell counts, one notices that in the 

presence of Zn at both 1 and 65 µM PO4
3-, Cd causes a greater decrease in chlorophyll a/ 

phycoerythrin fluorescence.  This implies that in the presence of Zn, Cd causes 1) a 

decrease in chlorophyll a, 2) increase in phycoerythrin, 3) increase in number of cells, or 

4) a combination of these factors.  Figure 4.5 shows an increase in the number of cells in 

the Zn treatment with Cd addition at 1, but not 65 µM PO4
3-. 
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Global Proteomic Data 

 Analysis resulted in the identification of 594 proteins from 62,264 mass spectra 

over 16 injections (8 treatments injected in duplicate).  In Scaffold 3, using filters of 95% 

peptide minimum confidence level, 99.9% protein minimum confidence level and a 

minimum of 2 peptides resulted in a 1.9% peptide false discovery rate (Peng et al., 2003, 

Zhang et al., 2006).  This experiment identified 23.6% of the 2519 possible proteins 

present in the genome of WH8102.  Using a more stringent filter, analysis resulted in the 

identification of 420 proteins from 60,388 mass spectra using 95% peptide minimum 

confidence level, 99.9% minimum confidence level and a minimum of 3 peptides.  This 

resulted in a 0.9% peptide false discovery rate (Peng et al., 2003, Zhang et al., 2006).  

Using these more stringent conditions, 16.8% of the 2519 possible proteins present in the 

genome of WH8102 were identified.  Seventy-one proteins showed differences in protein 

abundances in at least two treatments using a minimum difference of 7 spectral counts 

and a threshold of 7 spectral counts, based on technical replicates of each of the 8 

treatments.  Cluster analysis (Eisen et al., 1998) reveals most prominently phosphate-

stress effects (Figure 4.7).  
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Pairwise analyses between experimental treatments reveal most noticeably the 

effects of PO4
3- stress, but also lesser Cd and Zn effects (Figure 4.8). There are 28 ways 

to pair 8 treatments, only 12 are considered here, querying what happens to the proteome 

when two conditions are held constant and the third is varied.  Among the 16 pairwise 

comparisons not discussed here, one could query, for example, if Cd could replace Zn at 

low PO4
3- (compare no Zn-low PO4

3- to no Zn-low PO4
3- + Cd).  Proteins are considered 

differentially abundant here if the average spectral count value of one of the pairs is equal 

to or greater than five and the pair of proteins are different by two-fold or more.  Use of 

Fisher’s Exact Test (Zhang et al., 2006) confirms that most proteins are different in 

abundance using these stringencies, excepting a few proteins with five spectral counts.  

The two-fold or more differentially abundant proteins with low spectral counts remain in 

the tables, but are considered tenuous in analysis.  The results of Fisher’s Exact Test also 

conclude that more proteins are statistically different in abundance than the > two-fold 

analysis alone.  This is because a smaller fold difference in a greater value is statistically 

different, thus proteins with higher spectral counts that are different by less than two-fold 

are differentially abundant (Compare Tables 4.4 and 4.5).  

In these pairwise proteome comparisons, three observations can be made: 1) the 

no Zn-low PO4
3- treatment had the greatest number of proteins > two-fold different in 

abundance (Compare Figure 4.8a, b and c), 2) Cd addition caused a greater change in the 

number of  > two-fold different in abundance in the absence of Zn (Figure 4.8b), and 3) 

the acute addition of Cd under both low and high PO4
3- conditions had fewer proteins of  

> two-fold different in abundance in the presence or absence of Zn (Figure 4.8c).  The 

combination of no Zn-low PO4
3- (red) had the greatest number of proteins (55 in Figure 

4.8a, 32 in Figure 4.8b and 31 in Figure 4.8c) differentially abundant compared to any 

other treatment.  For comparison, the no Zn-high PO4
3- treatment had the number of 

proteins different as 55 in Figure 4.8a, 10 in Figure 4.8b and 16 in Figure 4.8c.  The 

presence of Zn caused a smaller change in the total number of proteins > two-fold 

different in abundance when Cd was added acutely (compare 42 with no added Zn, both 

high and low PO4
3- to 11 proteins in the presence of Zn, both high and low PO4

3-; Figure 
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4.8b).  Cadmium addition under low and high PO4
3- conditions caused fewer proteins to 

be differentially abundant in the presence or absence of Zn, perhaps hinting that Cd 

alleviates Zn deprivation (Figure 4.8c). 

 
The influence of phosphate (pairwise comparisons) 

As noted by cluster analysis in Figure 4.7 and the number of proteins 

differentially abundant in Figure 4.8, PO4
3- appeared to cause the most difference in this 

multivariate Cd-Zn-PO4
3- matrix experiment.  In the Zn added, 1 compared to 65 µM 

PO4
3- treatments, 18 proteins were two-fold or more differentially abundant with a 

spectral count of at least five (Table 4.1).  Eight proteins were more abundant in the 1 µM 

PO4
3- treatment, including 6 proteins also found to be differentially expressed as 

transcripts in a microarray experiment by Tetu et al. (2009) (starred in Table 4.1).  These 

6 proteins are SYNW2391 putative alkaline phosphatase, SYNW1018 ABC transporter, 

substrate binding protein, phosphate (PstS), SYNW0953 cell-surface protein required for 

swimming motility (SwmB), SYNW0085 cell-surface protein required for swimming 

motility (SwmA), SYNW0700 glyceraldehyde-3-phosphate dehydrogenase and 

SYNW224 possible porin.  Also of note is SYNW0359 bacterial metallothionein.  See 

Figure 4.9 for relative abundances of SYNW0359, SYNW2391 and SYNW1018.  Ten 

proteins were more abundant in the 65 µM PO4
3- treatments, including 6 ribosomal 

proteins one of which was found to be downregulated as a transcript in the Tetu et al. 
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(2009) analysis, SYNW2082 50S ribosomal protein L18.  
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Seven proteins were strongly upregulated transcripts in the Tetu et al., 2009 

microarray experiment that were not two-fold or greater differentially abundant in this 

experiment (Table 4.2).  One of these was close, however: SYNW0156 phosphorylase, 

1.9-fold greater in the 1 µM PO4
3- treatment. 
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 In the no Zn-1 µM PO4

3- compared to no Zn-65 µM PO4
3-, 55 proteins were two-

fold or more differentially abundant with a spectral count of at least five (Table 4.3).   

Sixteen proteins were more abundant in the 1 PO4
3- treatment, including five hypothetical 

proteins and two proteins involved in photosynthesis. No proteins showed abundances 

similar to gene expression in Tetu et al., 2009.  Thirty-nine proteins were more abundant 

in the 65 µM PO4
3- treatments, including 12 involved in genetic information processing, 

two involved in the biosynthesis of chlorophyll and two hypothetical proteins. 
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In the Zn + 4.4 pM Cd2+, low compared to high PO4

3- treatments, 17 proteins were 

two-fold or more differentially abundant with a spectral count of at least five (Table 

III.1).   Nine proteins were more abundant in the Zn-low PO4
3- + Cd treatment, including 

five proteins also found to be differentially expressed as genes in a microarray 

experiment by Tetu et al., 2009 (starred in Table III.1).  These five proteins are 
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SYNW2391 putative alkaline phosphatase, SYNW1018 ABC transporter, substrate 

binding protein, phosphate (PstS), SYNW0953 cell-surface protein required for 

swimming motility (SwmB), and SYNW0156 phosphorylase.  Eight proteins were more 

abundant in the Zn-high PO4
3- + Cd treatment, including three related to the 

phycobilisomes and two ribosomal proteins. 

In the no Zn + 4.4 pM Cd2+, low compared to high PO4
3- treatments, 12 proteins 

were two-fold or more differentially abundant with a spectral count of at least five (Table 

III.2).   Four proteins were more abundant in the no Zn-low PO4
3- + 4.4 pM Cd2+ 

treatment, including two proteins also found to be differentially expressed as genes in a 

microarray experiment by Tetu et al., 2009.  These two proteins are SYNW0953 cell-

surface protein required for swimming motility (SwmB) and SYNW1018 ABC 

transporter, substrate binding protein, phosphate (PstS).  Eight proteins were more 

abundant in the no Zn-high PO4
3- + 4.4 pM Cd2+ treatment, including six involved in 

photosynthesis (two phycobilisome, three Photosystem II and one Photosystem I 

proteins). 

The influence of cadmium (pairwise comparisons) 

Cd effects can be discerned by examining pair-wise protein comparisons (Figure 

4.8b).  In the no Zn-high PO4
3- + 4.4 pM Cd2+ compared to no Cd added treatments, 10 

proteins were two-fold or more differentially abundant with a spectral count of at least 

five (Table 4.4).  Five proteins were more abundant in the no Zn-high PO4
3- + 4.4 pM 

Cd2+ treatment, including three unknown proteins, one involved in photosystem II and 

one involved in the biosynthesis of riboflavin (Vitamin B2) (Figure 4.10). Five proteins 

were more abundant in the no Zn-high PO4
3- no added Cd2+ treatment (Figure 4.11). 
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 In addition to proteins being considered differentially abundant by a two-fold or 

greater differential abundance, there is Fisher’s Exact Test as explained earlier in this 

section.  Applying Fisher’s Exact Test results in 13 more proteins being labeled 

significantly differential in abundance, in addition to the 7 in Table 3.1 (Table 4.5).  Ten 

proteins are statistically more abundant in the no Zn-65 µM PO4
3- + 4.4 pM Cd2+, of 

which five are involved in photosynthesis (Figure 4.10).  Three are statistically more 

abundant in the no Zn-65 µM PO4
3- no added Cd2+ (Figure 4.11).  Seven of these 13 are 

involved in photosynthesis. 
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In the Zn-high PO4

3- + 4.4 pM Cd2+ compared to no Cd2+ added treatments, four 

proteins were two-fold or more differentially abundant with a spectral count of at least 

five (Table III.3).  All four proteins were more abundant in the Zn-high PO4
3- + 4.4 pM 

Cd2+ treatment, three of the four are involved in photosynthesis and one SYNW2227 

possible porin, unknown function, probably outer membrane protein. 

In the no Zn-low PO4
3- + 4.4 pM Cd2+ compared to no Cd2+ added treatments, 32 
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proteins were two-fold or more differentially abundant with a spectral count of at least 

five (Table III.4).  Sixteen proteins were more abundant in the no Zn-low PO4
3- + 4.4 pM 

Cd2+ treatment, including three ribosomal proteins, a protein involved in chlorophyll 

biosynthesis and one protein involved in photosynthesis.  Sixteen proteins were more 

abundant in the no Zn-low PO4
3- no added Cd2+ treatment, including three hypothetical 

proteins, a protein involved in chlorophyll biosynthesis and two proteins involved in 

photosynthesis. 

In the Zn-low PO4
3-  + 4.4 pM Cd2+ compared to no Cd2+ added treatments, seven 

proteins were two-fold or more differentially abundant with a spectral count of at least 

five (Table III.5).  Two proteins were more abundant in the Zn-low PO4
3- + 4.4 pM Cd2+ 

treatment, SYNW1933 δ-aminolevulinic acid dehydratase, which is in the biosynthetic 

pathway for chlorophyll and SYNW1716 putative carboxysome structural peptide 

(CsoS2), presumably useful for carbon fixation.  Five proteins were more abundant in the 

Zn-low PO4
3- no added Cd2+ treatment, including one hypothetical protein, a protein 

involved in lipid metabolism, a protein involved in purine metabolism, a protein involved 

in carbohydrate metabolism and a protein involved in amino acid metabolism. 

The influence of zinc (pairwise comparisons) 

Zn effects can be discerned by examining pair-wise protein comparisons (Figure 

4.8).  In the high PO4
3- treatments comparing no Zn to Zn added (Figure 4.1 - black to 

blue), 16 proteins were two-fold or more differentially abundant with a spectral count of 

at least five (Table III.6).  Twelve proteins were more abundant in the no Zn-high PO4
3- 

treatment, including three proteins involved in photosynthesis (SYNW0303 photosystem 

II manganese-stabilizing polypeptide, SYNW1982 photosystem II chlorophyll-binding 

protein CP47 and SYNW1835 photosystem I reaction center subunit III (PsaF)), two 

hypothetical proteins, SYNW1933 δ-aminolevulinic acid dehydratase involved in 

chlorophyll biosynthesis and SYNW0085 cell surface protein required for swimming 

motility (SwmA).  Four proteins were more abundant in the Zn-high PO4
3- treatment, 

including SYNW0670 hypothetical protein, SYNW2191 photosystem II complex 

extrinsic protein precursor (PsuB) and SYNW2310 glutaredoxin. 
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In low PO4
3- treatments comparing no Zn to Zn added (Figure 4.1 - red to orange), 

31 proteins were two-fold or more differentially abundant with a spectral count of at least 

five (Table III.7).  Eleven proteins were more abundant in the no Zn-low PO4
3- treatment, 

including three hypothetical proteins, two ribosomal proteins, and one protein involved in 

photosynthesis. Twenty proteins were more abundant in the Zn-low PO4
3- treatment, 

including SYNW0259 bacterial metallothionein, SYNW2391 putative alkaline 

phosphatase, SYNW0953 cell surface protein required for swimming mobility (SwmB), 

three hypothetical proteins (SYNW0128, SYNW0160 and SYNW1661), one protein 

involved in chlorophyll biosynthesis, SYNW1065 putative photosystem II reaction center 

(psb28), SYNW1717 ribulose bisphosphate carboxylase small chain and SYNW0082 

riboflavin (Vitamin B2) synthase subunit beta. 

In the high PO4
3- + acute 4.4 pM Cd2+ comparing no Zn to Zn added (Figure 4.1 - 

black/hatched to blue/hatched), three proteins were two-fold or more differentially 

abundant with a spectral count of at least five (Table III.8).  One protein was more 

abundant in the no Zn-high PO4
3- + 4.4 pM Cd2+ treatment, SYNW0406 hypothetical 

protein.  Two proteins were more abundant in the Zn-high PO4
3- + 4.4 pM Cd2+ 

treatment, SYNW0405 adenylosuccinate lyase, involved in purine and amino acid 

metabolism and SYNW2500 aconitate hydratase, involved in carbohydrate metabolism, 

TCA cycle, glyoxylate and dicarboxylate metabolism and energy metabolism, reductive 

carboxylate cycle. 

In the low PO4
3- + acute 4.4 pM Cd2+ comparing no Zn to Zn added (Figure 4.1 - 

red/hatched to orange/hatched), 9 proteins were two-fold or more differentially abundant 

with a spectral count of at least five (Table III.9).  Five proteins were more abundant in 

the no Zn-low PO4
3- + 4.4 pM Cd2+ treatment, including SYNW1815 ABC transporter, 

substrate binding protein, phosphate. Four proteins were more abundant in the Zn-low 

PO4
3- + 4.4 pM Cd2+ treatment, including SYNW0359 bacterial metallothionein and 

SYNW2391 putative alkaline phosphatase (Figure 4.9). 

Cadmium-zinc interactions at high phosphate (pairwise comparison) 

This pairwise comparison is not part of the 12 pairwise comparisons.  It queries if 
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the relative protein abundances look similar if Cd is present instead of Zn at high PO4
3- 

(Figure 4.1 - black/hatched to blue).  In the no Zn-high PO4
3- + 4.4 pM Cd2+ compared to 

Zn-high PO4
3- treatments, 8 proteins were two-fold or more differentially abundant with a 

spectral count of at least five (Table III.10).  Seven proteins were more abundant in the 

no Zn-high PO4
3- + 4.4 pM Cd2+, including four proteins involved in photosynthesis, 

SYNW0085 cell surface protein required for swimming motility (SwmA) and 

SYNW2227 possible porin, unknown function, outer membrane associated.  SYNW2500 

aconitate hydratase, involved in carbohydrate metabolism, TCA cycle, glyoxylate and 

dicarboxylate metabolism and energy metabolism, reductive carboxylate cycle was more 

abundant in the Zn-high PO4
3- treatment. 

 

DISCUSSION 

 Phosphate stress and limitation in Synechococcus WH8102 has been much studied 

in recent years by many different methods, including computational prediction (Su et al., 

2003; Su et al., 2007), physiological experimentation (Moore et al., 2005), and 

microarray analyses (Tetu et al., 2009, Ostrowski et al., 2010).  Phosphate stress and 

limitation has also been studied in Prochlorococcus by microarray (Martiny et al., 2006).  

PCR-based field assays of picocyanobacteial phnD, phosphonate-binding protein of 

ABC-type phosphonate transporter (SYNW1169) showed a depth-dependent pattern of 

expression which followed gradients of P-availability (Ilikchyan et al., 2009) and the 

phnD from the cyanobacterium, Trichodesmium erythraeum, was found to be 

differentially expressed in field populations in the North Atlantic (Dyhrman et al., 2006).  

Previous experiments revealed an interaction between the addition of Cd and the greater 

relative abundance of phosphate stress proteins (Cox et al., unpublished data) and this 

interaction was further explored in this study.  Because of the role of Zn in the 

metalloenzyme alkaline phosphatase, involved in acquisition of phosphate from 

organophosphate, the influences of Zn on the potential interfering metal, Cd were probed.  

The present study combines physiological experimentation with global proteomic 

analyses to study the interactions of phosphorus, Zn, and Cd in Synechococcus WH8102. 
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Physiological Data 

Cd may have a hormetic effect in this experiment and the mechanism, albeit 

unknown, could be in the interaction with Zn.  A hormetic response is defined as low 

dose stimulation, although different concentrations of Cd, both lower and higher would 

need to be added to get a full hormetic curve, defined as stimulation at low dosages with 

toxicity at higher dosages (Calabrese, 2005).  The instantaneous growth rates in the Zn 

treatments, both 1 and 65 µM PO4
3-, during the last 24 hours of the experiment show an 

increase in instantaneous growth rates by factors of ~2 and 1.7 respectively with 4.4 pM 

Cd2+ addition relative to the no Cd added (Figure 4.4b).  In contrast, there is hardly an 

increase in instantaneous growth rates in the no Zn treatments, both 1 and 65 µM PO4
3- 

with the addition of Cd relative to the no Cd added, increase by factors of ~1.2 and ~1.1, 

respectively (Figure 4.4b).  This may be described as a hormetic response (Calabrese, 

2005).  The growth of Chlorella, an eukaryotic algae, is stimulated by low concentrations 

of Cd and inhibited by higher concentrations (Vallee and Ulmer, 1972).  Perhaps the 

response is favorable due to displacement of Zn by Cd and subsequent nutritive use of 

Zn.  Metallothionein is one possible ‘Zn buffer’ (Frausto da Silva and Williams, 1991) 

and in mammals upon cadmium and copper loading, metallothionein has been know to 

release Zn (Zhang et al., 2003.  Alternatively, perhaps the Cd is directly having a 

nutritive effect or a regulatory effect inducing cell division.  Using this data set, one 

cannot distinguish between Cd having a nutritive effect because of its interactions with 

Zn or because of Cd alone. 

Relative chlorophyll a and phycoerythrin fluorescence are adequate to monitor 

cell growth, but they do not accurately show when a culture enters stationary phase.  

Growth rates calculated using phycoerythrin fluorescence, for example, yielded similar 

results to actual growth rates in that the four initial treatments had almost identical 

growth rates (Figure III.2a, 4.4a).  Instantaneous growth rates calculated by 

phycoerythrin fluorescence in the last 24 hours of the experiment, however, indicated that 

the 1 µM PO4
3- treatments entered stationary phase (Figure III.2b).  Actual growth rates, 

calculated using cell numbers, demonstrated that the Zn added low phosphate treatments 
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entered stationary phase during the last 24 hours of the experiment (Figure 4.4b).  This 

disparity in growth phase does suggest that at 1 µM PO4
3-, during mid-late exponential 

growth, phycoerythrin perhaps is not being produced even though the cells continue to 

divide.   

Global Proteomic Data 

 Tetu et al. (2009) performed a transcriptome analysis of PO4
3- limited and replete 

cultures in Synechococcus WH8102, as previously mentioned in the results section.  In 

that experiment, Synechococcus WH8102 was grown in SN medium (Waterbury and 

Willey, 1988) or artificial seawater with PO4
3- concentrations varying from 5 to 87 µM, 5 

µM being P-stressed and 87 µM being P-replete.  In this experiment, Synechococcus 

WH8102 was grown in modified Pro-TM medium at a four concentrations: no PO4
3- 

added, 1, 5, and 65 µM PO4
3-, finding the cultures to be P-stressed at 1 µM PO4

3- (Figure 

III.1).  The global proteomic analyses reported in this chapter, therefore, were from 

cultures grown at 1 and 65 µM PO4
3-, low and high PO4

3-, respectively.  Thirty-six 

percent of the transcripts that Tetu et al. (2009) reported upregulated (36 total transcripts) 

under PO4
3- stress in this experiment (13 proteins).  Fifteen percent of the total (6 

proteins) were found to be > two-fold more abundant in the low PO4
3- treatment. 

The transcriptome response reported by Tetu et al. (2009) is similar to the 

proteome response in this experiment.  Of the 36 transcripts deemed strongly upregulated 

by > two-fold under early P-stress in the transcriptome study, 13 of these transcripts were 

identified as proteins in this experiment (Figure 4.12).  Of the 13 proteins observed, 6 

were > two-fold more abundant, including SYNW2391 alkaline phosphatase, 

SYNW1018 ABC transporter substrate binding protein phosphate (PstS), SYNW0953 

cell surface protein required for swimming motility (SwmB), SYNW0799 

glyceraldehyde-3-phosphate dehydrogenase and SYNW2224 possible porin (Table 4.1, 

Figure 4.1 - orange and blue, Figure 4.12 - pink, upper right quadrant), and 7 showed 

minor changes in abundance, including SYNW1815 ABC transporter substrate binding 

protein phosphate, SYNW0156 phosphorylase, SYNW0406 hypothetical protein, 

SYNW1119 6-phosphogluconate dehydrogenase, SYNW1213 thioredoxin peroxidase 



  
 192 
 
 
 

and SYNW2508 molecular chaperone DnaK2, heat shock protein hasp 70-2, and 

SYNW0160 conserved hypothetical protein (Table 4.2, , Figure 4.12 - black, lower right 

quadrant).  SYNW0156 phosphorylase was close to being > two-fold more abundant, it 

was more abundant in the low PO4
3- compared to the high PO4

3- by a factor of 1.9.  Two 

more proteins were identified that were > two-fold more abundant that were absent from 

the Tetu list of  > two-fold upregulated transcripts, SYNW1982 photosystem II 

chlorophyll-binding protein CP47 and SYNW1147 ribonucleotide reductase (Class II) 

(Table 4.1).  Of the 23 transcripts observed strongly downregulated (> two-fold less) by 

Tetu et al. (2009) only 3 were identified as proteins, SYNW2340 50S ribosomal protein 

L7/L12, SYNW2030 conserved hypothetical protein, and SYNW2082 50S ribosomal 

protein L18, only SYNW2082 50S ribosomal protein L18 was  > two-fold less in 

abundance.  One might expect less overlap in the protein data from down-regulated 

transcripts because less protein would presumably be made, reflecting the lower 

proteome coverage relative to the transcriptome.  It is interesting to note that four of these 

phosphate acquisition genes, in addition to others, increased in expression in a microarray 

experiment when WH8102 was grown with Vibrio parahaemolyticus, a model 

heterotroph (Tai et al., 2009).  This information, combined with results from previous 

protein experiments in which these phosphate acquisition genes were more abundant with 

acute Cd addition in WH8102 stationary phase cultures (Cox et al., unpublished data), 

suggests that the phosphate response may ultimately be triggered by many factors. 
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 None of the 16 proteins that were > two-fold more abundant in the Zn-low PO4

3- 

compared to Zn-high PO4
3- matched the 55 proteins that were > two-fold more abundant 

in the no Zn-low PO4
3- compared to no Zn-high PO4

3- (Table 4.3, Figure 4.1 - red and 

black, see also Figure 4.9).  In addition, none of the 36 transcripts strongly upregulated 

under P-stress in the Tetu et al. transcriptome experiment matched the 55 proteins that 
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were > two-fold more abundant in the no Zn-low PO4
3- compared to no Zn-high PO4

3-.  If 

a figure such as Figure 4.12 were to be made, it would be blank.   These observations 

show that the proteome response to low PO4
3- in the absence of Zn is very different than 

in the presence of Zn.  This could suggest that Zn is somehow vital to the functioning of 

the P-stress response in this organism, perhaps as a cofactor in SYNW2391 putative 

alkaline phosphatase, or in the signaling mechanism. 

Alkaline phosphatases 

There are four genes in the genome of WH8102 that are annotated as alkaline 

phosphatases, SYNW0120 putative alkaline phosphatase-like protein, SYNW0196 

putative alkaline phosphatase, SYNW2390 putative alkaline phosphatase/5’ nucleotidase, 

and SNW2391 putative alkaline phosphatase (phoA).  In addition, SYNW1799 is an 

alkaline phosphatase (phoX) (Kathuria and Martiny, 2010).  Alkaline phosphatases are 

variable in their cellular location and associated metal ions.  Two alkaline phosphatases 

purified from different strains of Vibrio cholerae, a gamma-proteobacteria, both acted on 

a variety of organic phosphate esters, but showed different levels of reactivation upon 

addition of Na+, K+ and Mg2+ ions (Roy et al., 1982).  Alkaline phosphatases (phoA) are 

thought to be located in the periplasm and are activated by Zn and magnesium, whereas 

other alkaline phosphatases (phoX, phoD) are activated by calcium ions (Luo et al., 

2009).  A recent survey of the metagenomic databases concluded that phoX appeared to 

be more widespread in the ocean than phoA (Sebastian and Ammerman, 2009).  There 

are also other types of alkaline phosphatases in cyanobacteria.  The freshwater 

cyanobacterium Synechococcus 7942 contains a phoV in addition to phoA (Wagner et al., 

1995).  PhoV had a broad substrate specificity for phosphomonoesters, required Zn2+ for 

activity and was inhibited by phosphate, but it was inhibited by Mn2+ (Wagner et al., 

1995). Recent experimentation on SYNW1799 phoX overexpressed in E. coli have 

shown enhanced enzyme activity in the presence of calcium, leading the authors to 

conclude that bacterial lineages with the presence of phoX in the genome may not be 

subject to Zn-P colimitation (Kathuria and Martiny, 2010). 

In this experiment, we detect SYNW2391 and SYNW1799, but not SYNW0120, 
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SYNW2390 or SYN0196 in the proteome.  SYNW2391 alkaline phosphatase (phoA) is 

depicted in Figure 4.9, but SYNW1799 alkaline phosphatase (phoX) is only detected by a 

few counts, making quantitative comparison difficult.  Perhaps it is important that we did 

not detect high amounts of this protein at low phosphate in the absence of Zn, which is 

what one might expect from a phoX that does not presumably require Zn. 

Metallothionein in Synechococcus WH8102 

 As discussed in Chapter 1 on pages 21-22, metallothioneins are small, 

approximately 56 amino acid residue proteins with a high percentage of cysteine residues 

that are involved in chelating metals such as zinc, cadmium, copper, silver, mercury, and 

arsenic (Duncan et al., 2006).  Their exact function is elusive but metallothioneins may 

function as 1) metal resistance proteins for detoxifying zinc, cadmium and copper; 2) 

reservoirs for the storage of excess Zn and/or copper than can be mobilized under metal 

limiting conditions; 3) metal chaperones that deliver Zn to Zn-dependent proteins; and/or 

4) antioxidants that scavenge oxygen radicals (Palmiter, 1998).  In these data, 

metallothionein relative protein abundances look similar to the relative protein 

abundances of PO4
3- stress proteins (Figure 4.9) and in combination with previous 

proteome experiments, in which metallothionein was detectable only when Zn or Cd was 

present in the medium (Cox et al., unpublished data), many questions arise:  1) Is 

metallothionein related to PO4
3- stress?  2) Does it supply the alkaline phosphatase with 

Zn, acting as a metal reservoir? or 3) is it somehow involved in Zn signaling and/or the 

PO4
3- stress signaling mechanism? 

 Metallothionein abundance appeared to show a dependence on growth phase of 

the culture, with metallothionein being more abundant with the addition of Cd and Zn in 

stationary phase.  The cells in this experiment were harvested during growth phase and 

metallothionein did not show relative protein abundances in this experiment as expected.  

Consistent with previous experiments, it is present when there is Zn in the medium as 

opposed to no Zn added, however, it did not increase with acute Cd stress, no matter the 

Zn concentration unlike in previous experiments (Cox et al., unpublished data).  In 

previous experiments at 65 µM PO4
3- (high phosphate), with Zn and no Zn added and 
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with and without Cd addition, cultures were in stationary phase at time of harvest.  

Metallothionein protein abundance was higher in the Cd treatments and also in the Zn 

treatments (Cox et al., unpublished data).  In this experiment, which was expanded to 

include a low PO4
3- treatment, contrary to the previous experiments, metallothionein did 

not appear to be more abundant in the presence of Zn in general, rather metallothionein 

was high in the Zn added, low PO4
3- treatment and had a similar relative protein 

abundance distribution to P-stress proteins (Figure 4.9).  More quantitative analyses using 

a triple quadrupole mass spectrometer would be useful to constrain metallothionein 

change in WH8102. 

The influence of phosphate (pairwise discussion) 

As noted by the ordering of the heat map in Figure 4.7 and the number of proteins 

differentially abundant in Figure 4.8, phosphate appeared to cause the most difference in 

this multivariate Cd-Zn-phosphate interaction experiment.  We used the Zn added 

treatments to compare to the Tetu et al, 2009 microarray experiment because their media 

would have Zn present.  We saw 6 of the 9 proteins more abundant as the same proteins 

differentially expressed in the Tetu et al., 2009 microarray experiment.  When Zn was not 

added, 16 proteins were more abundant but none of them were the same as the Tetu et al., 

2009 experiment (Table 4.3).  This suggests that Zn is integral to the phosphate response 

in this cyanobacterium.   

 Proteins more abundant in the high phosphate compared to the low phosphate in 

the absence of Zn (Table 4.3) suggests that phosphate may be related to the abundance of 

ribosomal proteins and it is similar, but not exactly the same with or without Zn.  Twelve 

proteins that were > two-fold more abundant with high phosphate in the absence of Zn 

were involved in genetic information processing, including ten ribosomal proteins, which 

are involved in protein synthesis.  Comparing the high to the low phosphate in the 

presence of Zn, six ribosomal proteins were > two-fold more abundant, three of which 

were the same proteins as in the no Zn added treatments (Table 4.1).  Note that the tables 

compare low phosphate to high phosphate. 

In the Zn added + 4.4 pM Cd2+ low compared to high phosphate treatments 
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(Figure 4.1 - orange/hatched to blue/hatched), 9 proteins were more abundant in the low 

phosphate treatment (Table III.1).  Of these, five proteins were also found to be > two-

fold differentially abundant with phosphate in the Zn treatments without Cd (Table 4.1).  

Five were expressed as transcripts in a microarray experiment by Tetu et al., 2009 (Table 

4.1).  These five proteins similar to Zn treatments without Cd were SYNW2391 putative 

alkaline phosphatase, SYNW1018 ABC transporter, substrate binding protein, phosphate 

(PstS), SYNW0953 cell-surface protein required for swimming motility (SwmB), and 

SYNW0359 bacterial metallothionein.  Four of the 5 proteins were the same as those 

found in Tetu et al., 2009, with SYNW0359 bacterial metallothionein present instead of 

SYNW0156 phosphorylase.  One of the four proteins that was differentially abundant 

with phosphate with Zn added and acute Cd and not Zn alone was SYNW1533 probable 

glutathione reductase (NADPH); glutathione may be involved in the intracellular binding 

of Cd (Table III.1).  Eight proteins were more abundant in the Zn added + 4.4 pM Cd2+ 

high phosphate treatment compared to the Zn added + 4.4 pM Cd2+ low phosphate 

treatment, including three related to the phycobilisomes and two ribosomal proteins, 

implying perhaps the interference of Cd in photosynthesis (Table III.1). 

In the no Zn added + 4.4 pM Cd2+ low compared to high phosphate treatments 

(Figure 4.1 - red/hatched to black/hatched), there were four proteins more abundant in the 

low phosphate treatment, including two proteins also found to be differentially expressed 

as genes in the Tetu et al., 2009 microarray experiment (Table III.2).  These two proteins 

are SYNW0953 cell-surface protein required for swimming motility (SwmB) and 

SYNW1018 ABC transporter, substrate binding protein, phosphate (PstS).  Because these 

two proteins were not observed as being differentially abundant in the absence of added 

Zn, perhaps the acute addition of Cd stimulated the presence of these proteins.  Eight 

proteins were more abundant in the no Zn added + 4.4 pM Cd2+ high phosphate 

treatment, including six involved in photosynthesis (two phycobilisome, three 

Photosystem II and one Photosystem I proteins) (Table II.2).  In the absence of added Zn, 

organisms are more vulnerable to Cd (See Chapter 3), in this case perhaps the process of 

photosynthesis becomes more vulnerable to Cd with no added Zn and low phosphate 
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concentrations. 

The influence of cadmium (pairwise discussion) 

Cd effects can be discerned by examining pairwise protein comparisons (Figure 

4.8).  In the no Zn added high phosphate + 4.4 pM Cd2+ compared to no Cd added 

treatments (Figure 4.1 - black and black/hatched), five proteins were more abundant in 

the Cd treatment, including three unknown proteins, one involved in photosystem II and 

one involved in the biosynthesis of riboflavin (Vitamin B2) (Figure 4.10). Perhaps these 

unknown proteins are involved in Cd handling in the absence of Zn, because they are not 

differentially abundant in the treatments with Zn in the medium.  Five proteins were more 

abundant in the no Zn added, high phosphate no added Cd2+ treatment, two of which are 

involved in carbohydrate metabolism (Figure 4.11).  Ten additional proteins were found 

to be significantly different by Fisher’s Exact Test, five of which are involved in 

photosynthesis (Figure 4.10).  Three more proteins are statistically more abundant in the 

no Zn added high phosphate no added Cd2+, two of which are involved in photosynthesis 

(Figure 4.11).  Perhaps Cd in the absence of Zn affects the photosynthetic apparatus.  

The number of proteins differentially abundant with acute Cd addition decreases 

with Zn in the media (Figure 4.8b).  Only four proteins were > two-fold more abundant in 

the Zn-high PO4
3- + 4.4 pM Cd2+ compared to no Cd2+ added treatments, three of the four 

are involved in photosynthesis and one SYNW2227 possible porin (som), unknown 

function, probably outer membrane protein (Table III.3).  This porin appears to be more 

abundant with acute Cd addition, but only at 65 µM PO4
3- concentrations. 

In the no Zn-low PO4
3- + 4.4 pM Cd2+ compared to no Cd added treatments 

(Figure 4.1 - red and red/hatched), 16 proteins were more abundant in the no Zn + Cd 

treatment, including three ribosomal proteins, a protein involved in chlorophyll 

biosynthesis and one protein involved in photosynthesis (Table III.4).  Sixteen proteins 

were more abundant in the no Zn-high PO4
3- no added Cd treatment, including three 

hypothetical proteins, a protein involved in chlorophyll biosynthesis and two proteins 

involved in photosynthesis.  Compared to only 10 proteins differentially abundant in total 

at no Zn-high PO4
3- (Figure 4.8b, Table 4.4), Cd appears to affect the proteome more at 
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low PO4
3- in terms of the greater number of proteins differentially abundant. 

The number of proteins differentially abundant with acute Cd addition decreased 

with Zn in the media at low PO4
3- (Table III.5).  In the Zn-low PO4

3- + 4.4 pM Cd2+ 

compared to no Cd2+ added treatments, two proteins were more abundant in the Zn-low 

PO4
3- + 4.4 pM Cd2+ treatment, SYNW1933 δ-aminolevulinic acid dehydratase, which is 

in the biosynthetic pathway for chlorophyll and SYNW1716 putative carboxysome 

structural peptide (CsoS2), presumably useful for carbon fixation.  Five proteins were 

more abundant in the Zn-low PO4
3- no added Cd2+ treatment, including one hypothetical 

protein, a protein involved in lipid metabolism, a protein involved in purine metabolism, 

a protein involved in carbohydrate metabolism and a protein involved in amino acid 

metabolism.  The acute addition of Cd decreased the relative protein abundance of 

metabolic proteins.  

The influence of zinc (pairwise comparison) 

Zn effects can be discerned by examining pairwise protein comparisons (Figure 

4.8).  In the no Zn-high PO4
3- compared to Zn-high PO4

3- treatments (Figure 4.1 - black 

and blue), 11 proteins were more abundant in the no Zn-high PO4
3- treatment, including 

three proteins involved in photosynthesis (SYNW0303 photosystem II manganese-

stabilizing polypeptide, SYNW1982 photosystem II chlorophyll-binding protein CP47 

and SYNW1835 photosystem I reaction center subunit III (PsaF)), two hypothetical 

proteins, SYNW1933 δ-aminolevulinic acid dehydratase involved in chlorophyll 

biosynthesis and SYNW0085 cell surface protein required for swimming motility 

(SwmA) (Table III.6).  The photosystem II binding proteins are curious, especially 

SYNW1982 photosystem II chlorophyll-binding protein CP47, which is similarly 

abundant in the no Zn-high PO4
3- as the Zn-high PO4

3- + 4.4 pM Cd2+ treatments, both 

about two-fold greater than Zn-high PO4
3-.  Perhaps this has to do with the Zn-high PO4

3- 

entering stationary phase at the time of harvest.  Four proteins were more abundant in the 

Zn-high PO4
3- treatment, including SYNW0670 hypothetical protein, SYNW2191 

photosystem II complex extrinsic protein precursor (PsuB) and SYNW2310 glutaredoxin. 

In the no Zn-low PO4
3- compared to Zn-low PO4

3- treatments (Figure 4.1- red and 
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orange), 11 proteins were more abundant in the no Zn-low PO4
3- treatment, including 

three hypothetical proteins (SYNW0380, SYNW1145 and SYNW0340), two ribosomal 

proteins and one protein involved in photosynthesis (Table III.7).  Because we observed 

such a response to lower PO4
3- concentrations in treatments with Zn present, one might 

expect a response to phosphate in the absence of Zn.  Thus, since there is no obvious 

known PO4
3- response observed in the fold-change protein abundance data, perhaps the 

hypothetical proteins could be involved in PO4
3- response in the absence of Zn.  This 

could be considered an example of proteome plasticity.  Twenty proteins were more 

abundant in the Zn-low PO4
3- treatment, including SYNW0259 bacterial metallothionein, 

SYNW2391 putative alkaline phosphatase, SYNW0953 cell surface protein required for 

swimming mobility (SwmB), three hypothetical proteins (SYNW0128, SYNW0160 and 

SYNW1661), one protein involved in chlorophyll biosynthesis, SYNW1065 putative 

photosystem II reaction center (psb28), SYNW1717 ribulose bisphosphate carboxylase 

small chain and SYNW0082 riboflavin (Vitamin B2) synthase subunit beta.  These 

proteins corroborate the ideas that the presence of Zn affects the PO4
3- response and the 

presence of metallothionein is correlated with the presence of Zn. 

In the no Zn-high PO4
3- + 4.4 pM Cd2+ compared to Zn-high PO4

3- + 4.4 pM Cd2+ 

treatments (Figure 4.1 - black/hatched and blue/hatched), SYNW0406 hypothetical 

protein was more abundant in the absence of Zn (Table III.8).  Two proteins were more 

abundant with added Zn, SYNW0405 adenylosuccinate lyase, involved in purine and 

amino acid metabolism and SYNW2500 aconitate hydratase, involved in carbohydrate 

metabolism, TCA cycle, glyoxylate and dicarboxylate metabolism and energy 

metabolism, reductive carboxylate cycle (Table II.8).  This suggests that in the presence 

of high PO4
3- and acute Cd the proteome is not strongly affected by the presence or 

absence of Zn.  

When Zn was modulated at low PO4
3- with the addition of Cd (no Zn-low PO4

3- + 

4.4 pM Cd2+ compared to Zn-low PO4
3- + 4.4 pM Cd2+) (Figure 4.1 - red/hatched and 

orange/hatched), five proteins were more abundant in the no Zn-low PO4
3- + 4.4 pM Cd2+ 

treatment, including SYNW1815 ABC transporter, substrate binding protein, phosphate 
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(PstS) (Table III.9). Four proteins were more abundant in the Zn-low PO4
3- + 4.4 pM 

Cd2+ treatment, including SYNW0359 bacterial metallothionein, SYNW2391 putative 

alkaline phosphatase and SYNW1533 probable glutathione reductase (NADH) (Table 

III.9, see also Figure 4.9).  The greater abundance of metallothionein and alkaline 

phosphatase in the Zn treatment is consistent with Zn being involved with these proteins.  

Because Cd is known to induce the production of metallothioneins in many systems, the 

metallothionein was expected to be higher in both of these treatments, as opposed to just 

the Zn treatment.  This may be because of the low spectral counts detected.  Further 

quantification of this protein would be desirable. 

Cadmium-zinc interactions (pairwise discussion) 

Holding PO4
3- constant, the comparison of the no Zn-high PO4

3- + 4.4 pM Cd2+ to 

Zn-high PO4
3- treatments (Figure 4.1 - blue and black/hatched) will expose Zn 

replacement by Cd or Cd sensitivity in the absence of Zn if such occur.  Seven proteins 

were more abundant in the no Zn-high PO4
3- + 4.4 pM Cd2+, including four proteins 

involved in photosynthesis, SYNW0085 cell surface protein required for swimming 

motility (SwmA) and SYNW2227 possible porin, unknown function, outer membrane 

associated (Table III.10).  SYNW2500 aconitate hydratase, involved in carbohydrate 

metabolism, TCA cycle, glyoxylate and dicarboxylate metabolism and energy 

metabolism, reductive carboxylate cycle was more abundant in the Zn-high PO4
3- 

treatment (Table III.10).  Perhaps the lower abundances of photosynthesis proteins is 

reflective of the Zn-high PO4
3- treatment entering stationary phase shortly before harvest.  

Perhaps WH8102 is more sensitive to acute Cd addition in the absence of added Zn.  This 

would be similar to the sensitivity of WH5701 in Chapter 3 to chronic Cd exposure and 

consistent with previous experiments in which growth rates of WH8102 were decreased 

with added Cd and low Zn (Saito et al., 2003). 

Other proteins of note 

Photosystem II D1 proteins   

The function and evolution of the psbA gene family in marine Synechococcus was 

investigated fairly recently with marine Synechococcus WH7803 as a case study 
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(Garczarek et al., 2008).  Basically, the D1 protein of photosystem II is encoded by a 

family of genes, up to six different genes in as observed in 11 marine cyanobacterial 

genomes.  In each of these genomes, only one of is the D1:1 isoform and the rest are 

D1:2 isoforms; in freshwater cyanobacteria D1:2 isoforms are exchanged for D1:1 

isoforms in response to stress, thereby altering photosystem II photochemistry (Garczarek 

et al., 2008). Synechococcus WH8102 has four psaB genes, one D1:1 and three D1:2.  

We only detected the D1:1 isoform, at an average low of 2.1 and average high of 4.9 

spectral counts.  The fact that we only detected the D1:1 isoform suggests that these 

cultures are not experiencing stress to cause them to use the D1:2 isoform, implies that 

the D1:2 isoform is below our detection limit, or could mean that the D1:2 isoform does 

not have a measurable tryptic peptide. 

ATP-Binding Cassette Systems  

 ABC binding cassette systems use the energy of hydrolysis of ATP to transport a 

substance across a membrane, as well as being involved in cellular processes and their 

regulation (Bu et al., 2009).  Their reliance on phosphate in ATP makes these systems 

important to phosphorus cycling.  Molecules can be transported into (metals, phosphate, 

phosphonates, etc) or outside of a cell (heavy metals, drugs, peptides, etc.).  In a recent 

study, the genome of WH8102 was shown to have 41 ABC systems, the highest of the 

marine Synechococcus genomes included in the analysis (Bu et al., 2009).  Note that 

WH5701 was not included in their analysis.  Nineteen ABC systems were common to all 

10 marine Synechococcus and 12 Prochlorococcus genomes analyzed, including the 

import systems of cobalt uptake (CBY), metals, predicted substrate-manganese (MET), 

phosphonates and phosphates (PHN), oligopeptides and Ni (OPN) and mineral and 

organic, predicted substrates-phosphate and iron (III) (MOI) , and various export systems 

of drugs, peptides and lipids (DPL) (Bu et al., 2009).   

The cyanobase database (website) has 90 genes annotated as ATP-cassette 

binding systems.  We detected 20 of these genes as proteins, 22%.  They are listed here 

with their substrate: SYNW0193 multidrug, SYNW0217 ATP-binding component, 

SYNW0320 ATP-binding component, SYNW0840 amino acids, SYNW0843 amino 



  
 203 
 
 
 

acids, *SYNW1018 phosphate (PstS), SYNW1112 ATP-binding component, 

SYNW1169 phosphonate, SYNW1286 possibly phosphate, SYNW1415 nitrate-like, 

SYNW1541 multidrug, *SYNW1815 phosphate (PstS), *SYNW1797 iron (futA, sfuA, 

idiA), SYNW1917 glycine betaine, SYNW2175 ATP-binding component, SYNW2325 

oligopeptides, *SYNW2442 urea, SYNW2485 cyanate, *SYNW2487 cyanate and 

SYNW2522 exinuclease (uvrA).  Note that the five ABC system components that were 

overall most abundant in terms of spectral counts (starred) are involved with the essential 

elements phosphorus, iron and nitrogen.  PstS is also seen upregulated in 

Prochlorococcus under P-stress (Martiny et al., 2006). 

Polyphosphate 

The fine structure of cyanobacteria has been of interest for many years (Lang, 

1968).  Granules had been noticed that differed in size and abundance with amount of 

PO4
3- in the medium and age or developmental stage of cell, bigger and more granules 

present with more PO4
3- and the older the cell (Lang, 1968).  Although dissolved PO4

3- 

concentrations in the oceans are rarely more than 2 µM, many marine Synechococcus 

have the genes related to polyphosphate metabolism, Synechococcus WH8102 and 

Synechococcus WH5701 included.  Because phosphorus is such a vital element to life 

and marine cyanobacteria are not exposed to high PO4
3- concentrations in the 

environment, this suggests that the polyphosphate metabolism may be vestigial or 

alternatively, laterally transferred.  Although we may not expect to observe 

polyphosphates in cyanobacteria gathered directly from the ocean, we expect to see 

polyphosphates in cultures grown with excess phosphate. 

Polyphosphate is proposed to interact with Cd.  Chlamydomonas acidophila, a 

eukaryotic algae, dramatically changes its cellular structure in the presence of 10 and 20 

µM Cd, causing the degradation of polyphosphate and increased short-chain and 

orthophosphates in the vacuole (Nishikawa et al., 2003).   Other researchers have 

reported the presence of Cd deposits in vacuoles of Saccharomyses cerevisiae, baker's 

yeast, with corresponding high quantities of phosphorus by electron microscopy (Volesky 

et al., 1992). In the unicellular cyanobacterium Anacystis nidulans R2, cells with a large 
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polyphosphate reserve showed a greater tolerance to 0.02 ppm Cd than cells with a small 

polyphosphate reserve (Keyhani et al., 1996).  They propose that a decrease in 

polyphosphate reserves results in fewer sites for Cd chelation and thus a higher 

intracellular concentration of metals (Keyhani et al., 1996).  This led one of the authors to 

later propose that although in many microorganisms polyphosphate is correlated with 

heavy metal tolerance, the ability to degrade orthophosphate may result in the binding of 

metals to orthophosphate and the removal of the resulting metal phosphates by the 

inorganic phosphate transport system (Keasling, 1997).  A recent study by Zeng and 

Wang 2009 found that elevated cellular phosphate concentrations increased the short-

term uptake of Cd and Zn in the freshwater cyanobacterium, Microcystis aeruginosa.  

They propose that polyphosphate bodies may have served as a metal sink to 

sequester/detoxify the Cd and Zn (Zeng and Wang, 2009). 

Polyphosphates are relevant to phosphorus cycling in the ocean.  In a fairly recent 

study of a site in a Pacific fjord off of Vancouver Island, British Columbia with surface 

water total dissolved phosphate concentrations of 0.5 µM, ~11% of the total dissolved 

phosphorus pool, 7% of total phosphorus in surface water biomass and 7% of total 

phosphorus in sinking material was polyphosphate (Diaz et al., 2008).  These data and 

other supporting evidence led the authors to conclude that diatom-derived polyphosphates 

play a critical role in the formation of calcium phosphate minerals observed in marine 

sediments worldwide (Diaz et al., 2008). 

Two important enzymes in the metabolism of polyphosphate were observed at 

low spectral counts in this experiment SYNW1846 putative exopolyphosphatase (ppx), 

which removes a phosphate from polyphosphate, and SYNW2495 polyphosphate kinase 

(ppk), which forms polyphosphate using ATP, but not at a high enough abundance for 

comparative analysis.  SYNW2270 predicted inorganic polyphosphate/ATP NAD+ kinase 

was not detected.  These proteins have potential for future research.  Direct measurement 

of polyphosphate alongside proteomic analysis would yield valuable information about 

the interaction of Cd and polyphosphate. 

 



  
 205 
 
 
 

The physiological response to Cd addition may be nutritive at low PO4
3- and added Zn 

 The instantaneous (24 hour) growth rates and higher cell counts in the added Zn 

low phosphate with added Cd would imply that Cd is acting like a nutrient.  Perhaps this 

is by the direct use of Cd as a nutrient or the release of an intracellular pool of Zn due to 

Cd exposure (Figure 4.4b, 4.5).  This nutritive effect of Cd was not observed in any of the 

other treatments. 

Biochemical branch point - insertion of a metal ion - heme to chlorophyll 

 The insertion of a metal ion into protoporphyrin IX determines the biochemical 

fate of the molecule.  It is a branch point in the biochemical pathway of heme proteins, 

including phycobilins and chlorophyll.  If an iron atom is inserted by ferrochelatase, the 

molecule is destined to be a heme or biliverdin.  If a Mg is inserted by Mg-chelatase, the 

molecule is destined to be chlorophyll. Mg-chelatase uses energy from the hydrolysis of 

ATP to insert a Mg2+ ion into porphyrin (Reid and Hunter, 2002).  Branch-point enzymes 

such as these are tightly regulated according to the prevailing metabolic conditions 

(Walker and Willows, 1997).  As was mentioned in Chapter 3, Cd has been known to 

substitute for Mg in chlorophylls in higher plants (Küpper et al., 1998).  Cd could 

substitute into a porphyrin without enzymatic catalysis.  There is the potential for Cd to 

affect these enzymes.  There are five annotated genes for chelatases in WH8102: 

SYNW0213 protoporphyrin IX Mg-chelatase subunit (chlD), SYNW0327 Mg-chelatase 

family protein, SYNW0716 protoporphyrin IX Mg-chelatase subunit (chlI), SYNW0820 

protoporphyrin IX Mg-chelatase subunit (chlH) (cyanobase, NCBI annotates as 

cobaltochelatase) and SYNW1747 ferrochelatase.  We detect three of these at low 

spectral counts in this experiment, SYNW0213 protoporphyrin IX Mg-chelatase subunit 

(chlD), SYNW0820 protoporphyrin IX Mg-chelatase subunit (chlH) (cyanobase, NCBI 

annotates as cobaltochelatase) and SYNW0716 protoporphyrin IX Mg-chelatase subunit 

(chlI).  Quantitative studies of these enzymes could be applied for further study. 

Vitamin D 

 The response of a culture to acute Cd addition could be akin to a culture exposed 

to intense light.  The vitamin D family (Vitamin D2 and D3) comprises fat soluble 



  
 206 
 
 
 

secosteroids.  Vertebrates require the active form (1,25(OH)2D3) to be physiologically 

functional in terms of calcium and bone metabolism (Holick, 1989).  Provitamin D 

(ergosterol) is produced in fungi, plants, animals, phytoplankton, and zooplankton 

(Holick, 1989).  Vitamin D has been relatively little studied in the ocean. A study 

documents the production of previtamin D2 (ergosterol) in cultures of Emiliania huxleyi 

and proposes that the provitamin D and family of compounds evolved as natural 

sunscreens to absorb damaging UV radiation (Holick et al., 1982).  Two additional ideas 

as to the functionality of vitamin D are photodegradation as a photochemical signal 

directly correlating to amount of UV exposure in an organism and the opening of 

ergosterol ring in the cell membrane upon UV exposure resulting in membrane 

permeability to allow cations such as calcium into a cell (Holick, 2003).   In mammalian 

systems, vitamin D is thought to be a hormonal link between Zn2+ and Ca2+ (da Silva and 

Williams, 1991).  In these systems, vitamin D controls the expression of calbindin, a 

protein involved in Ca2+ transport and metallothionein, a proposed Zn ‘buffer’ (da Silva 

and Williams, 1991).  Vitamin D was also observed to stimulate Ca and PO4
3- uptake 

across the brush border boundary in chick intestines by increasing the Vmax of these 

carrier-mediated processes (Matsumoto and Rasmussen, 1982).  Perhaps vitamin D is 

partially regulating the presence of metallothionein in cyanobacteria.  Metallothionein is 

more abundant when Zn is added (Figure 4.9) and in a different experiment with 8102, 

harvested in stationary phase, acute Cd addition correlated with increased metallothionein 

abundance, whether or not Zn was added.  Very little is known about Vitamin D in 

cyanobacteria.  One Vitamin D receptor in a Prochlorococcus genome is annotated. 

 

CONCLUSIONS 

In conclusion, the physiologic response of Synechococcus WH8102 to acute 4.4 

pM free Cd2+ under four varying Zn and PO4
3- treatments (Zn-high PO4

3-, no Zn-low 

PO4
3-, no Zn-high PO4

3-, and no Zn-low PO4
3-) revealed during the last 24 hours of the 

experiment relative to the high PO4
3- conditions: 1) increased growth rates under low 

PO4
3- conditions and 2) even greater increased growth rates with Cd addition under low 
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PO4
3- and Zn conditions.  The proteomic response revealed differential abundances of 

PO4
3- stress proteins comparing low to high PO4

3- conditions and differential protein 

abundances with chronic Zn and acute Cd.  Considering the proteomic data, it appears 

that Zn is vital to the PO4
3- response in this organism because 1) Cd causes more 

proteomic changes at low PO4
3- and 2) in the presence of high PO4

3- and acute Cd the 

proteome is relatively indifferent to the presence of Zn.  These findings are consistent 

with the ideas that Zn is beneficial for the functioning of alkaline phosphatase and other 

proteins involved in PO4
3- acquisition, and at environmentally relevant PO4

3- 

concentrations the presence of Zn and Cd make a difference in the physiology and 

proteome of cells, perhaps by influencing regulation.  

Comparison of proteomic data to literature transcriptome analyses shows a similar 

response of many important P-stress related proteins (putative alkaline phosphatase, 

periplasmic ABC phosphate binding protein (PstS), motility-related proteins (SwmA and 

SwmB), and possible porin), but also shows other proteins that did not respond in the 

microarray study, bacterial metallothionein (SmtA), as well as proteins that did respond 

in the microarray study and not this one, thioredoxin peroxidase.  These data suggest that 

there is a fair amount of consistency between the transcriptome and proteome under P-

stress.  Taken together with the fact that the treatments without Zn showed a different 

proteomic reaction to phosphorus stress, the presence of Zn appears important to the 

phosphorus metabolism of this open ocean cyanobacterium.  

  

FUTURE RESEARCH 

Quantitative analyses by triple quadrupole of metallothioneins, alkaline 

phosphatases, polyphosphates and chelatases would yield useful information. 

Unfortunately, the peptides needed for the quantification of this particular 

metallothionein are unable to be produced using current commercially available methods, 

probably because of the high number of cysteine residues. 

A repeat experiment with analysis of protein across late growth phase into 

stationary phase would be advantageous because physiologically and proteomically, 
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much changes across this late-log to stationary phase transition. Time course experiments 

have not been performed thus far with Synechococcus WH8102 and detail across this 

transition would be revealing.  A time course experiment with chronic Cd exposure could 

be performed and compared to Synechococcus WH5701, yielding a comparison of 

chronic exposure from a coastal to an open ocean cyanobacterium. 

In addition, the microarray is available for WH8102.  It would be possible to 

collect for transcriptome analyses at the some time and compare gene expression with 

protein abundance directly.  Also, genetic manipulations of WH8102 are possible to 

perform if one was interested in detailed gene functionality (Brahamsha, 1996). 
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Chapter 5: Conclusions 
In summary, the combination of uptake field studies on natural phytoplankton 

assemblages and laboratory proteomic and physiological experiments on cyanobacterial 

isolates have yielded much information about the interactions of cadmium, zinc, and 

phosphorus in the ocean and in marine Synechococcus.  Environmentally relevant 

concentrations of total dissolved Cd in the ocean range from lower than pM in shallow 

water to around 1 nM in deeper waters and EDTA-buffered culture media experiments 

were performed with free concentrations in this range. 

Enriched stable isotope uptake field studies using picomolar additions of 110Cd in 

the Costa Rica Upwelling dome showed that the intermediate abundance enriched Cd 

stable isotope tracer method appears to function as long as the total dissolved natural Cd 

present is below ~200 pM.  Overall, uptake of 110Cd occurs in waters shallower than 40m, 

the uptake rate of 110Cd correlates positively with chlorophyll a concentrations, 110Cd 

uptake increases with time, a single 24-hour time point seems adequate to measure 110Cd 

uptake rates in environmental samples at sea, preexisting particulate Cd must be 

considered especially in high biomass regions, calculated upwelling flux of Cd is roughly 

equivalent to uptake flux into the particulate fraction inside the dome, and stations inside 

the dome do not show a decrease in chlorophyll a concentrations with added Cd up to 5 

nM whereas stations outside the dome do.  

The physiological and proteomic effects of two levels of chronic Cd exposure (4.4 

and 44 pM Cd2+) over the life cycle of a little-studied coastal cyanobacterium 

representative of the natural population in the Baltic Sea, Synechococcus WH5701, 

revealed that cells exposed to Cd under Zn deficiency appear to be physiologically robust 

during exponential growth phase, showing no difference in growth rates or fluorescence, 

but their proteome was quite different compared to cultures with no added Cd.  The 

proteome of exponential cultures with Cd added showed differences in relative 

abundances of proteins involved in chlorophyll a biosynthesis, photosynthesis, carbon 

fixation, steroid and lipid biosynthesis, sulfur and cysteine metabolism, and genetic 

information processing suggesting a great metabolic impact. During stationary phase, 
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chronic Cd exposure caused an increase in relative chlorophyll a fluorescence and faster 

mortality rates.  The proteome changed during exponential phase and throughout 

stationary phase.  This is the first detailed proteomic study over the life cycle of 

Synechococcus and of chronic Cd exposure under Zn deficiency.  It also showed that Cd 

may be used to indicate where Zn is important in a cell. 

The interactions of acute Cd (4.4 pM free Cd2+) exposure under a matrix of Zn 

deficient (no added Zn2+) and Zn replete (tens of picomolar free Zn2+), low PO4
3- (1 µM) 

and high PO4
3- (65 µM) conditions in the well-studied open-ocean cyanobacterium, 

Synechococcus WH8102, revealed a number of physiological and proteomic results.  

Low PO4
3- cultures had higher growth rates during the last 24 hours of the experiment 

than the high PO4
3- and had even higher growth rates with the addition of Cd in both the 

low PO4
3- and Zn added treatments.  The proteomic response to low PO4

3- was different 

under Zn deficient and Zn replete conditions, which suggests that the presence of Zn is 

vital to the response of the organism to different PO4
3- concentrations and provides an 

example of proteome plasticity.  The acute addition of Cd caused more changes in protein 

response at low PO4
3- than high PO4

3- conditions, which may indicate a connection 

between Cd and P.  Comparisons with literature transcriptome analyses of PO4
3- stress in 

this organism showed similar increases in relative abundance of PO4
3- stress response 

proteins including PstS (a phosphate binding protein) and an alkaline phosphatase (access 

of organic phosphate), which shows consistency in the two approaches.  One bacterial 

metallothionein (SmtA) also appeared to be correlated with proteins present under low 

PO4
3- conditions.   

These studies also raised questions about the meaning of toxicity.  As discussed in 

Chapter 2 on page 39, toxicity can be considered the deleterious effects of a substance to 

an organism.  Toxicity itself refers to the degree of being poisonous, or degree of harmful 

effects produced by a substance in an organism.  Toxic effects can range from decreased 

performance to death.  In field experiments described in Chapter 2, toxicity was 

considered to be decreased performance of bottled phytoplankton assemblages in terms 

of decreased chlorophyll a concentrations relative to a control treatment.  Although the 
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phytoplankton assemblages did not die (using chlorophyll a concentrations as a proxy for 

biomass), they were negatively affected.  In laboratory experiments described in Chapter 

3, the decreased performance of cultures exposed to chronic Cd as evinced by greater 

than or equal to two-fold differences in protein abundances was observed followed by the 

earlier death of these cultures.  The effect was dose-dependent, with the higher Cd 

treatment dying faster than the lower Cd treatment.  Most studies that only focus on 

growth phase or only measure cell abundances coupled with fluorescence measurements 

would miss the toxicity of Cd observed in Chapter 3.  These results support the idea that 

chronic exposure of organisms to small amounts of a toxin may take time for the 

deleterious effects to be observed, and that global proteomics may serve as a tool to 

identify toxic effects. 

Overall, this work has yielded many insights into the interactions of Cd, Zn and P 

and set the stage for future research in the laboratory and in the field.  It has shown that 

Cd affects many cellular processes and that there are interactions between Cd, Zn and P.  

The global proteomic analyses allowed observation of changes in relative protein 

abundances among different treatments even when growth rates and fluorescence 

measurements were similar giving a detailed view of the reactions of cells to changing 

environmental conditions and suggesting proteome plasticity.  Global proteomic methods 

applied to cyanobacterial and other systems in the future will also be useful for 

elucidating mechanisms of hormetic response.  The relationships of metals to proteins 

will be vital to understanding the interactions observed between these elements and 

organisms in the environment. 
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Appendix I: Supplementary Data to Chapter 2 
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Appendix II: Supplementary Data to Chapter 3 
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Appendix III: Supplementary Data to Chapter 4 
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